
IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 73 (2010) 026801 (70pp) doi:10.1088/0034-4885/73/2/026801

Solar radiation transport in the cloudy
atmosphere: a 3D perspective on
observations and climate impacts
Anthony B Davis1,3 and Alexander Marshak2

1 Los Alamos National Laboratory, Space and Remote Sensing Group, Los Alamos, NM 87545, USA
2 NASA—Goddard Space Flight Center, Climate and Radiation Branch, Greenbelt, MD 20771, USA

E-mail: Anthony.B.Davis@jpl.nasa.gov and Alexander.Marshak@nasa.gov

Received 8 July 2009, in final form 13 July 2009
Published 19 January 2010
Online at stacks.iop.org/RoPP/73/026801

Abstract
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it
conjures up major challenges for weather, climate, environmental science and beyond. Those
engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods
are even more confronted. The problem comes, on the one hand, from the spatial complexity of
real clouds and, on the other hand, from the dominance of multiple scattering in the radiation
transport. The former ingredient contrasts sharply with the still popular representation of
clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer
computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion
and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative
transfer literature over the past 50 years and identify three concurrent and intertwining thrusts:
first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative
transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative
transfer phenomena to innovate observation methods and technologies? We quickly realize
that the smallest scale resolved computationally or observationally may be artificial but is
nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and
complementary classes: stochastic and deterministic. Both approaches draw on classic and
contemporary statistical, mathematical and computational physics.
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List of abbreviations/acronyms

nD n-dimensional (n = 1, 2, 3)
n+1D n-plus-one-dimensional (i.e. space–time)
ACE Aerosol, Clouds and ocean Ecosystem

(upcoming NASA mission)
AERONET AEROsol observation NETwork
ARM Atmospheric Radiation Measurement

(DOE program)
AOT aerosol optical thickness
ASTER Advanced Space-borne Thermal Emission and

Reflection Radiometer (on Terra)
ATBD Algorithm Theory-Based Document
BC boundary condition
BRDF bi-directional reflectance distribution function
CCN cloud condensation nuclei
CKD correlated-k distribution (method for

spectral integration)
CERES Clouds and the Earth’s Radiant Energy System
CRM cloud resolving model
Ci cirrus
Cu cumulus
CWC condensed/cloud water content
CWP condensed/cloud water path
DISORT DIScrete Ordinate RT (DISORT),

a popular 1D RT code
DOAS differential optical absorption spectroscopy
DOE US Department of Energy
EarthCARE Earth, Clouds, Aerosols and Radiation

Experiment (ESA-JAXA mission)
EM electromagnetic
ERBE Earth Radiation Budget Experiment
ETA effective thickness approximation
ESA European Space Agency
FIRE’87 1987 First ISCCP Regional Experiment
FOV field-of-view
GCM global climate model

GHG greenhouse gas
GLAS Geoscience Laser Altimeter System
GSFC Goddard Space Flight Center (NASA center)
GWTSA Gamma-weighted two-stream approximation
H–G Henyey–Greenstein, a phase function model
ICA Independent Column Approximation
ICESat Ice, Cloud and land Elevation Satellite
IPA Independent Pixel Approximation
IR infra-red
ISCCP International Satellite Cloud

Climatology Project
IWC ice water content
IWP ice water path
JAXA Japan Aerospace eXploration Agency
LANL Los Alamos National Laboratory

(part of DOE complex)
LEO low-Earth orbit
LES Large-Eddy Simulation
LIDAR LIght raDAR
LITE Lidar-In-space Technology Experiment
LWC liquid water content
LWP liquid water path
MC Monte Carlo
McICA Monte Carlo ICA
MFP mean-free-path
MISR Multi-angle Imaging Spectro-Radiometer

(on Terra)
MMCR millimeter-wave cloud radar
MMF multi-scale modeling framework
MODIS Moderate Resolution Imaging

Spectro-radiometer (on Terra and Aqua)
MPL Micro-Pulse Lidar
MTI Multispectral Thermal Imager
MuSCL Multiple-Scattering Cloud Lidar
MWR microwave radiometer
NASA National Aeronautics and Space

Administration
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NCAR National Center for Atmospheric Research
NDCI Normalized Difference Cloud Index
NDVI Normalized Difference Vegetation Index
NFOV narrow FOV
NIPA Nonlocal IPA
NIR near IR (spectrum)
NOAA National Oceanic and Atmospheric

Administration
OCO Orbiting Carbon Observatory
ODE ordinary differential equation
PDE partial differential equation
PDF probability density function
RADAR RAdio-frequency Detection And Ranging
RMS root-mean-square
RT radiative transfer
RTE RT equation
RULLI Remote Ultra-Low Light Imaging

(a special LANL sensor)
SNR signal-to-noise ratio
SORCE SOlar Radiation and Climate Experiment
Sc stratocumulus
SF (2nd-order) structure function
SHDOM Spherical Harmonics Discrete Ordinates

Method
St stratus
SWIR shortwave IR (spectrum)
SZA solar zenith angle
THOR THickness from Off-beam Returns

(an airborne MuSCL system)
TIR thermal IR
TM Thematic Mapper
TOA top of atmosphere
UAV unmanned aerial vehicle
UV ultra-violet (spectrum)
Var Variance
VIS visible (spectrum)
VNIR visible to near IR (spectrum)
VZA viewing zenith angle
WAIL Wide-Angle Imaging Lidar
WRF Weather Research and Forecasting

(NCAR community) model

1. Context, motivation and outline

1.1. Overview of the historical record

Clouds have forever been objects of fascination by artists
and scientists alike. The earliest recorded observations and
explanations of clouds certainly go back to antiquity, when in
most circumstances philosophy, mythology and natural science
were not yet distinguishable. Da Vinci, Renaissance man
par excellence, experimented with smoke and light. Newton
famously explained the rainbow based on geometric optics,
dispersion and the hypothesis of microscopic spherically
shaped cloud/rain particles. The emergence of cloud physics
and dynamics can be traced to Luke Howard (1772–1864)
and, more specifically, his 1802 lecture ‘On the Modifications
of Clouds (...)’ delivered to the London Askesian Society.

Therein, he introduced a classification of clouds (stratus,
cumulus, cirrus, nimbus) that is still in use [1]; it was
entirely based on visual appearance. Atmospheric visibility
was studied empirically by Bouguer, Lambert and Beer in
that order from the early 1700s to mid-1800s. The law of
exponential transmission encapsulates their research. Lambert
also uncovered his famous ‘cosine’ law of radiometry: a
collimated beam deposits energy on a surface in proportion
to its projection onto a plane perpendicular to the beam.

Just over a century ago, Gustav Mie published his famous
paper [2] on the scattering and absorption of electromagnetic
(EM) waves by spheres in 1908. Peter Debye [3] was working
independently on the same problem at the same time, and
published his own paper in 1909. They were, however, both
preceded by Ludvig Lorenz who investigated the problem
earlier, publishing his work in 1890 ... in Danish. The origin
of multiple-scattering theory follows a similar pattern. Arthur
Schuster’s 1905 paper [4] is often cited as the first use of
what would become known as two-stream theory in radiative
transfer, but previous and apparently independent studies had
been published by Lommel [5] in 1887 and by Chowlson [6] in
1889. At any rate, the foundations of radiative transfer theory
per se were laid by Karl Schwarzschild and E Arthur Milne
for the angularly resolved case and by Arthur Eddington for
the coarser (flux-based) diffusion approximation. After that,
radiative transfer became entangled with particle transport. For
the decades leading up to the end of WWII, transport theory
was driven by early nuclear engineering projects: designing
and building both steady-state and super-critical devices. Of
course, both reactors and weapons have their nature-made
counterparts in nuclear astrophysics. Astrophysics, both
theoretical and observational, has always been a driver for
advances in radiative transfer per se.

The definitive reference for one-dimensional (1D)
radiative transfer (RT) in horizontally uniform plane-parallel
atmospheres is Chandrasekhar’s 1950 monograph [7]. The
earliest study we are aware of in three-dimensional (3D)
RT in the usual sense of horizontally non-uniform plane-
parallel atmospheres is in Giovanelli’s 1959 paper [8], 50
years ago at the time of this writing; he used 3D diffusion
theory. However, shortly before that, in 1956, Richards [9]
had investigated isotropic point sources embedded in dense
uniform clouds, again, where the diffusion regime prevails. In
1958, Chandrasekhar published a rigorous RT-based study [10]
of a narrow collimated beam (‘pencil-beam’) penetrating a
uniform semi-infinite isotropically scattering medium. For
reasons that will become clear as we proceed, we are highly
interested in these non-uniform source problems, which are
3D in their own right, even with solar RT in mind (think Green
functions). We will cover further developments in atmospheric
3D RT in the main body of the paper, especially in the later
sections (sections 6–8).

At present, we can identify two equally important
application areas for atmospheric RT in general, and 3D in
particular: broadband radiative energy budget estimation and
wavelength-specific optical remote sensing signal modeling.
Figure 1 illustrates the magnitude of the challenge posed by
the spatial complexity of cloudiness.
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Figure 1. Clouds. Left (a): the famous ‘blue marble’ full-face portrait of the Earth snapped by Apollo 17 astronauts on their way to the
Moon. Right (b): a complex cloud scene viewed from the Space Shuttle.

1.2. Solar radiation energetics in the presence of clouds:
climate modeling requirements on RT

Clouds are a naturally occurring component of the climate
system: they are the planet’s first line of defense for regulating
its intake of solar energy, obviously a key quantity in climate
balance. The global albedo of the Earth is ≈0.3, largely
due to the powerful reflection by the most opaque clouds
(cf figure 1(a)). They are also essential to the hydrological
cycle, all scales considered from the droplet (∼10−5m) to the
raindrop (∼10−3m) to the cloud system (∼10+4m) to the grid
scales (∼10+5m) of global climate models (GCMs). Yet clouds
are taken for granted by the majority of the climate modeling
community. They are not mentioned at all in the 22 pages of
the most recent ‘Climate Change 2007: Synthesis Report—
Summary for Policymakers’ by the Intergovernmental Panel
for Climate Change (http://www.ipcc.ch/) while aerosols are
mentioned six times. We find some solace in the 18 pages of
‘The Report of Working Group I (Physical Science Basis) of
the IPCC—Summary for Policymakers’ [11] where clouds are
mentioned four times (and aerosols 11), including the ominous
statement that ‘Cloud feedbacks remain the largest source of
uncertainty.’

This under-appreciation of clouds is unfortunate because
our skill in predicting their effect on the radiative and overall
energy budgets at the 50–200 km scales of interest in GCMs
(cf figure 1(b)) is not so good. This is in large part because
the clouds themselves are not well predicted. However, the
required RT is also overly simplified by assuming that in
each layer clouds occupy a fraction, Ac, between 0 and 1,
and that within the cloudy and cloud-free portions horizontal
uniformity is assumed. This makes the spatial aspect of the
GCM RT problem amenable to a weighted average of 1D
computations. How to combine the various layers, accounting
for their radiative interactions is more tricky. This usually
amounts to assuming either maximum or random overlap
geometry of the cloudy portions depending on whether or not
Ac goes to zero in between cloudy layers [12]. The treatment
of the spatial transport problem is expedited with a two-stream

or diffusion-type model while the real computational effort on
radiation in GCMs is expended in the spectral domain. That is
to be expected since the goal here is to compute by integration
over the entire solar spectrum how much radiation is reflected
back to space and how much solar heating occurs across the
atmospheric layers and at the surface.

Cloud particles are not strong absorbers. Gases are,
and clouds bounce the solar radiation through the gases very
efficiently. Now the spectral variations of gaseous absorption
are complex and shift with temperature and pressure. The
spectral domain thus gets the lion’s share of the CPU cycles in
GCM solar RT ‘parametrizations,’ a.k.a. shortwave radiation
‘schemes;’ this is even more the case in the thermal IR
(a.k.a. long-wave) spectrum where the RT is dominated
by ubiquitous emission and absorption processes rather than
incoming radiation and multiple scattering.

If we want to inject more realism into the spatial part
of the solar RT problem in GCMs, it has to be via a very
efficient computation. We briefly discuss such solutions, with
particular emphasis on the recent trend toward use of ‘multi-
scale modeling frameworks’ (MMFs) in climate modeling
[13, 14, and references therein]. MMFs embed cloud resolving
models (CRMs) with kilometer-scale resolutions in each GCM
grid-cell, thus removing the need to predict Ac and effective
optical properties for the uniform cloud. Consequently, a
whole new 3D RT problem arises to get the energetics accurate
enough, by some dynamics-based criterion, at every point in
the CRM.

1.3. Active and passive optical diagnostics of clouds: remote
sensing requirements on RT

In solar heating rate estimation, we perform at a minimum full-
range angular and spectral integrals. Moreover, some level of
spatial integration is usually in order: approximately kilometer
scales for CRMs, hundreds of kilometers for GCMs, up to the
planetary scale for elementary ‘0D’ energy balance models.
Remote sensing requirements for RT sharply contrast to this
picture: pixel scales range from meters to tens of kilometers,
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radiance propagation direction is at best sparsely sampled
(often fixed at a single value), and narrow spectral bands
are used.

Although there is a new trend toward ‘smart’ detector
systems that process data near the focal plane, satellite remote
sensing data harvesting is currently band-width limited. How
many radiance samples can we measure at a reasonable signal-
to-noise ratio (SNR), store and forward to a ground station?
Once received, the ‘level 0’ data in raw bytes and packets
are used to generate calibrated and geo-registered ‘level 1’
radiance data, ready for extraction of geophysical information
by a wide variety of retrieval techniques. This key operation
produces ‘level 2’ data on a pixel-by-pixel or region-by-region
basis in a given image. Once collected into a latitude–longitude
grid it becomes ‘level 3’ data, conveniently stratified and
formatted for the end-users.

In one form or another, remote sensing always leads
to an inverse problem. Of particular interest to us are the
so-called ‘physics-based’ retrieval techniques that invariably
start with forward RT modeling of remote sensing signals.
Sensitivity studies will reveal whether or not existing or
planned observations, for known or assumed instrumental
error, will support the retrieval of an inherent property of
the target. If there is sensitivity, one can design a retrieval
algorithm with the right level of complexity (e.g. 1D or 3D RT)
and accuracy (e.g. account or not for polarization effects), and
the right tradeoff between efficiency and flexibility (e.g. pre-
computed look-up tables versus RT computations on the fly).

In principle, the goal of inverse RT is to infer geometrical,
structural and optical properties of the medium that define
the forward RT problem locally and globally; such optical
properties would describe for instance reflection, scattering
and absorption processes. In practice, end-users of remote
sensing ‘products’ are generally more interested in the physical
and chemical properties that determine the optical parameters
of the airborne particles; this leads to another inverse problem
to solve. There is therefore tacit pressure to combine these
two non-trivial inverse problems even though they might be
best treated separately. In our experience, this cannot be done
without making further assumptions about the medium, e.g.
the particles are spherical and their radii are log–normally
distributed. Once such serial assumptions become buried in
Algorithm Theoretical Basis Documents (ATBDs), it becomes
harder to trace the source of remote sensing uncertainties.

Geometrical and structural properties of interest in cloud
remote sensing are cloud height, thickness and shape (e.g.
through its outer aspect ratio, where a slab has an infinite
aspect ratio). Deliverable optical properties of clouds (defined
formally below) will characterize scattering and/or absorption
through transport coefficients—or derived properties such as
the mean-free-path—at the observation wavelength. Valid
but more difficult questions about physico-chemical (a.k.a.
microphysical) properties of cloud particles include their phase
(liquid, ice or a macroscale mix of both), their size (e.g. via
moments of the size distribution) and their density. This last
quantity is highly valued since it may, for instance, give a
hint at the effect of pollution on clouds. Particulate emission
can indeed increase the number of cloud condensation nuclei

(CCN), and thus affect the cloud radiative properties that matter
for the climate [15–17].

To provide answers to all of the above questions about
clouds, multiple wavelengths, multiple viewing angles and
more and more multiple polarization channels must be brought
to bear. That is indeed the comprehensive suite of optical
characteristics the next generation of space-based instrument
will combine [18, 19]. However, such a broad grasp in
radiometric detail will always require sampling tradeoffs;
typically, they will involve spectral and spatial resolution. It is
therefore unlikely that a single optical sensor can answer all the
questions we have about the continuum of airborne particulates
ranging from aerosols to clouds. Multiple instruments looking
at the same scene give us a better chance. More and more, data
will be fused from multiple satellites flying in a close formation
such as the current ‘a train’ constellation [20].

From the signal modeling as well as engineering
perspectives, we distinguish ‘passive’ and ‘active’ instruments
where the former use natural sources of radiation while the
latter provide their own. Even considering the increased
complexity, cost and power requirements of the latter
technology, an active approach is often the best choice. The
focus of this review is on the solar spectrum, with reflection
and scattering of sunlight being at the origin of the signal.
We will nonetheless consider pulsed lasers as an alternate
source, and we will discuss LIDAR (LIght raDAR). We
also remind the reader that longer wavelengths, from the
thermal IR to the microwave region, have also been used
to probe clouds, both passively and actively. Active radio-
frequency instrumentation (RADAR) has long been used to
monitor precipitation. However, for the last couple of decades
millimeter-wavelength sources have become available that
reveal the stuff that clouds are made of.

The authors’ institutional bias is toward satellite
remote sensing, but suborbital (airborne and ground-based)
observations will also be considered in all of the above-
mentioned modalities. There are, however, cloud-probing
technologies that defy this classification. What would one
call an airborne instrument [21, 22] that is flown into the thick
of a cloud where it fires laser pulses and its time-resolved
radiometry of the resulting multiply scattered light is used to
determine the cloud’s overall thickness and volume-averaged
extinction coefficient (a local measure of opacity)? Where
is the ‘remote’ in this sensing? We would argue that this
‘in situ cloud lidar’ is indeed a remote sensing technology by
virtue of the key role of RT in the signal prediction, hence data
processing. Moreover, the goal is to use light for detection-
and-ranging of the cloud’s upper and lower boundaries.

There are other observations that defy some of the
conventional wisdom about what constitutes remote sensing.
For instance, physical climate scientists really want to know
globally the up-welling, top-of-atmosphere (TOA) flux across
the solar spectrum (i.e. the local albedo when normalized to
the incoming flux) as it varies in space and time. NASA has
dedicated entire multi-platform instrumental missions to this
measurement: the Earth Radiation Budget Experiment (ERBE)
[23] and follow-on Clouds and the Earth’s Radiant Energy
System (CERES) [24]. The problem amounts to sampling
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at best a small number of radiances emanating from a given
locale and inferring a specific weighted integral over all the
radiances. So an ‘angular model,’ the tell-tale RT ingredient
in remote sensing, is required. A priori, determination of this
cloud scene attribute is not going after any of its geometrical,
physical and chemical properties. A posteriori, the angular
model selection has a lot to do with the cloud scene properties,
even if we are not motivated here to retrieve them with specified
accuracy.

Insolation of the surface across the solar spectrum is
another important quantity strongly affected by clouds in all
of their 3D glory. Can it be determined by remote sensing?
Currently, the answer is yes, but with difficulty and depending
on the time-scale of interest. Given only TOA radiances, this
quantity is even more dependent on assumptions in the required
RT- and composition-modeling than the TOA solar flux. It is
nonetheless a high-value target for climate science, weather
forecasting and many kinds of biogeophysical investigation.

In summary, it is useful to separate the applications of
RT in the cloudy atmosphere into energetics and diagnostics
because, in many respects, the solution techniques will have
a very different flavor. However, the threads of observational
radiometry and computational transport intertwine in ways we
do not need to unravel completely. Rather we should follow
both strands and see the knots as opportunities for further
research.

1.4. Outline

In the following section, we describe the fundamental
physical processes of atmospheric radiation transport at the
microscopic, mesoscopic and macroscopic levels. Armed
with a complete description of the local balance of the radiant
energy budget, we introduce outer cloud geometry in section 3
and solve in representative cases the radiation transport
problem; several applications illustrate these solutions. In
section 4, we introduce RT Green functions for dense
scattering and at-most-weakly absorbing media in space and
in time; because of the remote sensing applications, particular
attention is given to the description of transport from boundary
sources to boundary/external observers. In section 5, we
partition the 3D radiation transport problem space into two
sectors: resolved and unresolved spatial variability, leading to
different phenomenologies and contrasting flavors of solution
techniques.

Sections 6 and 7 are devoted, respectively, to the
assessment and mitigation of the ‘damage’ that 3D radiation
transport phenomena cause in operational applications that
have adopted 1D RT models. Both energy budget estimation
and cloud remote sensing are covered with several examples
for each of these two tasks. Tables are turned in section 8
where we describe, with examples, how 3D radiation transport
phenomena can be used to design new algorithms and new
instruments for cloud remote sensing. We offer some
concluding remarks in section 9.

We will assume the reader has a basic background in
statistical, mathematical and computational physics, but no
more than curiosity about cloud physics, optics, observation

and radiation energetics. Atmospheric scientists in general,
and scientists from the National Aeronautics and Space
Administration (NASA) in particular, are prone to acute
‘acronymitis’ (13 abbreviations defined so far, 97 in all). They
are defined on the fly, but a comprehensive list of acronyms
and abbreviations is also provided at the end of the paper.
References will help the reader delve further into the topic
of realistic-yet-practical modeling of solar radiation transport
in the Earth’s cloudy atmosphere, and possibly in other natural
media.

2. Radiative transfer in the cloudy atmosphere:
optics with statistical and quantum physics

2.1. Emission, propagation, absorption and scattering

The Sun is a distant source of thermal radiation that impinges
on the Earth as an essentially unidirectional spatially uniform
flux F0λ measured conventionally in W m−2 broadband and
spectrally nm−1. This flux indeed has a rich spectral structure
that departs from black-body radiance at the effective 5775 K
temperature of the Sun’s photosphere; it is tabulated in
great detail by Kurucz [25]. The solar spectrum extends in
wavelength from λ ≈ 0.2 µm to ∞, with everything beyond
4 µm considered to be the thermal infra-red (TIR). It is divided
into the ultra-violet (UV), largely absorbed by stratospheric
ozone, the visible (VIS) and the near-IR (NIR) regions with
partitions at 0.4 and 0.7 µm; the IR region of interest is also
referred to as the solar IR or reflected IR to distinguish it from
the TIR that peaks at 10–12 µm and is dominated by terrestrial
radiation sources.

The integral ofF0λ across all wavelengths is≈1365 W m−2,
a number that matters of course tremendously for the Earth’s
climate, including 12 W m−2 beyond 4 µm in the TIR. It varies
slightly and is monitored as continuously and accurately as
possible from space by missions such as SOlar Radiation and
Climate Experiment (SORCE) [26] and soon Glory [18]. The
goal of solar radiation transport is to track the fate of this influx
of radiant energy from the somewhat elusive TOA [27]. It can
be either reflected back to space (and clouds play a critical role
in this mechanism that regulates the global climate), transmit-
ted to the surface (where it is either absorbed or reflected) or
absorbed by one of many possible atmospheric constituents
(that can be either in gaseous, liquid or solid phase). In this
process of energy-driven computation, one can also branch off
to the prediction of signals for all matter of sensors. This is the
basis of physics-based atmospheric remote sensing in the solar
spectrum. It is advantageous to use the Sun’s abundant light
in passive modalities. There are also good reasons to turn to
pulsed lasers in active ones. By far the most popular laser tech-
nology used in this part of the spectrum is solid-state Nd : YAG
which transmits at 1064 nm, often frequency-doubled to 532
nm (as in green-colored laser pointers), where molecules scat-
ter 16× more and aerosols somewhat more as well. Also,
silicon-based photon detection is at its most efficient in this
spectral region.

Constituents of the molecular atmosphere of primary
interest in solar spectrum are N2, O2, O3, NO2, H2O, NH4,
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CO, CO2 and CH4. The first two, by far the most abundant
species, are responsible for the Rayleigh scattering that gives
us the familiar blue hue of ultra-clear skies (no clouds or
pollution). Spatially and spectrally selective absorption is
how the atmosphere gains heat at the expense of the solar
radiation budget. Nitrogen has negligible absorption in
the solar spectrum. Oxygen, the other symmetric diatomic
molecule in the mix, absorbs some sunlight but not enough
to contribute energetically meaningful heating. This is of
course for basic quantum mechanical reasons that put their
transitional, vibrational and rotational energies in other parts
of the electromagnetic (EM) spectrum. However, O2 has a
few narrow forbidden transitions between 0.63 and 0.78 µm
known as the γ -, B- and A-bands. Figure 2 shows the details
of the O2 A-band, which we will develop a strong interest in
further on. The main role of ozone is to block the solar UV
from reaching altitudes below ∼35 km, fortunately for most
life-forms. Ozone also has a weak spectrally smooth feature
across the VIS regions known as the Chappuis band. For all
practical purposes, the stratospheric O3 layer defines the TOA
for solar radiation; at ≈6 pressure scale heights (≈8 km each),
scattering is still negligible (although detectable by sensitive
lidar techniques). All of the other molecules listed contribute
absorption bands in the NIR. Methane is an under-appreciated
absorber, more effective in the solar spectrum than carbon
dioxide [28].

In applications where spectral integrals must be estimated,
scanning the solar spectrum one-wavelength-at-a-time is not
an efficient way of performing the computation. Among the
practical ways of capturing gaseous absorption (at a given
pressure and temperature), the most popular is currently the
so-called ‘correlated-k distribution’ (CKD) method [29, 30].
In CKD modeling, the gaseous absorption coefficient is
re-ordered by strength and weighted by its occurrence within
a spectral region small enough that other optical properties
vary little. In essence, a Lebesgue integration [31] is used
in a case where variability is too unwieldy for a Riemann
approach. For a detailed account of molecular absorption and
associated modeling techniques, we refer the interested reader
to the classic monograph by Goody and Yung [32].

In this review, we focus on scattering alone or in
combination with absorption. Beyond molecular/Rayleigh
scattering, atmospheric optics at any given wavelength are
determined by the properties of aerosols (typically sub-
micrometer size airborne particulates) and cloud particles that
range from ∼1 to many tens of micrometers in size. The
latter can be either liquid or solid depending on environmental
conditions. At larger sizes, the Stokes flow results in net
fall speeds, so we are dealing with drizzle, rain and other
forms of precipitation. Aerosols and clouds interact radiatively
(cf section 6.5) and microphysically. Aerosols are indeed
necessary to trigger cloud formation by ‘activation’ of tiny
CCN. To a first approximation there is one cloud particle per
CCN, so increasing the small aerosol population by polluting
the air affects cloud properties: more particles compete for
the same amount of condensed water, and end up smaller
on average. We will see that this ‘indirect’ aerosol effect
(in climate parlance) makes clouds more reflective [16], as is

Figure 2. Simulated O2 A-band spectra in reflection. Bottom: fine
structure of the A-band displayed using, as a relevant example, the
O2 optical thickness across a layer from 860 to 911 hPa (altitudes
0.85 to 1.3 km), where one could find a typical low-level cloud. Top:
the reference spectrum (dashed) is for a background aerosol
atmosphere above an ocean surface in a typical state
(Cox–Munk [33] model for 5 m s−1 wind speed). The other (solid) is
for the same situation plus a liquid water cloud at 911–860 hPa with
an optical depth of 64. Line-by-line computations were coarsened to
the 0.0146 nm resolution of the Orbiting Carbon Observatory
(OCO) spectrometer. Both spectra were normalized to maximum
radiance (given, for reference, in the inset). Computations were
kindly provided by Dr Hartmut Bösch (University of Leicester,
Department of Physics and Astronomy, Earth Observation Science,
Space Research Centre).

dramatically illustrated by ship tracks in satellite imagery [34].
There are further ramifications of this impact of pollution on the
life-cycle of clouds, all the way to the systematic suppression
of precipitation [15]. Apart from changing planetary albedo by
making clouds more persistent, this effect can lead to changes
for hydrology and climate in the affected regions.

Beyond particle-size range, the distinction between cloud
and aerosol is much more about constitution than density.
Apart from trace chemicals in solution, as well as small
internally mixed particulates, cloud particles are made of
condensed water. Aerosols by contrast have an extremely
diverse chemical make-up, with more or less propensity for
‘wetting’ within the prevailing water vapor. In spite of some
preconceptions, this distinction should not be seen as a question
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of altitude: there are indeed clouds at ground level (e.g. fogs and
blowing snow) and there are aerosols in the stratosphere (e.g.
from large volcanic eruptions). Nor is it about the local density:
there are highly opaque aerosol plumes (e.g. from wild fires)
and there are ‘sub-visible’ cirrus clouds. From the radiation
transport perspective, however, there are two extreme regimes
that nature mixes in interesting and challenging ways: optically
thin (a.k.a. clear-sky) regions and optically thick regimes.

This brings us to the fundamental issue of radiation
propagation, which is at the core of transport theory per se.
Physicists will anticipate here a categorization based on the
Knudsen number, the ratio of the mean-free-path (MFP) to
the characteristic outer scale of the flow. We will soon spell
out some serious physical drawbacks to the conceptualization
of radiation transport as a flow of ‘photons’ through a
participating medium. Nonetheless, one can envision a kinetic
theory framework and think about optically thin regions of the
atmosphere as dominated by (fast) ballistic motion, while the
optically thick ones are dominated by (slow) diffusive motion.
In the following three subsections we will present in more
technical detail radiation transport theory and position it with
respect to classic physical optics.

2.2. Microscopic transport model: wave equation

What does Maxwell’s electromagnetic (EM) wave theory of
light as a vector wave field bring to the table? Theoretically,
it should be the starting point. Yet, until quite recently, its
role was limited to the computation of the optical properties of
atmospheric particles, one at a time. How much does it absorb?
How much does it scatter and how is that portion distributed
according to scattering angle?

The reader will not be surprised to hear that the standard
assumption about particle shape is a sphere. The answers to
the above questions then depend only on the non-dimensional
size parameter 2πr/λ, where r is the radius of the sphere,
and the complex index of refraction of the material, with
the imaginary part controlling absorption. As mentioned in
Section 1, Lorenz–Mie theory for scattering and absorption
of EM waves by spheres was established over a century ago.
The topic is still revealing some finer but fascinating details
in the area of resonances [35]. For in-depth surveys, we refer
the reader to the monographs by Bohren and Huffman [36]
and Mishchenko et al [37]. As one might also suspect, the
spherical assumption is often a very coarse approximation, but
for an important class of airborne particles of interest here
it is in fact a very good one: liquid cloud droplets, ranging
between ≈2 and ≈30 µm in radius. These droplets form
the vast majority of low-level clouds such as stratus (St),
cumulus (Cu) and stratocumulus (Sc) where mean or modal
radii vary between 5 and 15 µm from cloud to cloud and
from base to top (generally increasing). In turn, these cloud
types dominate the radiation energy budget, especially via
reflectivity (i.e. their significant contribution to the Earth’s
global albedo of ≈0.3). Figure 3 shows the outcome of a
Lorenz–Mie computation of the differential scattering cross-
section (in a normalization explained further on) averaged over
a population of randomly positioned droplets with a so-called

Figure 3. Scattering phase functions. The cloud ‘C1’ phase
function is plotted versus θs for λ = 0.532 µm; the (g = 0.85)
Henyey–Greenstein model in (33) and the Rayleigh scattering phase
function, P(θs) = (3/16π)(1 + cos2 θs), are also plotted.

‘Deirmendjian C1’ size distribution [38]. Even in semi-log
axes, we note the strong forward peak as well as the well-known
rainbow feature at ≈138◦. The former property is traceable
to diffraction while the latter is attributable, to first order, to
geometric optics, a reasonable approximation in the limit of
large size parameters (r � λ). For reference, the Rayleigh
scattering case is plotted as well; it applies to the opposite
limit of small size parameters (r � λ).

Many important atmospheric particulates are, however,
very far from spherical, not the least being ice crystals in
elevated clouds that come in very diverse shapes (‘habits’).
‘Equivalent sphere’ models have of course been used and
abused to represent parametrically non-spherical particle
populations in cloud and aerosol optics [39, 40]. In
the case of cold clouds, typical ice crystal sizes are
fortunately significantly larger than those of droplets, tens
to hundreds of micrometers. Ray-tracing computations—
assuming geometrical optics—therefore deliver reasonably
accurate results in many cases, from regular hexagonal shapes
[41] to convoluted fractal morphologies [42]. However,
present computational resources open the road to practical
high-accuracy methods that can capture the optical properties
of non-spherical particles, from the first principles of EM wave
theory [43–45, among others]. For a detailed survey of the
topic, we refer the interested reader to the monographs on this
topic authored and edited by Mishchenko et al [37, 46].

At any rate, most angular details in the single-particle
differential scattering cross-section are smoothed by averaging
over the distribution of particle sizes, N(r), which is typically
quite broad. The persistent diffraction peak survives averaging
as does the rainbow, which is, to a good approximation, a
geometrical optics (hence size-independent) feature.

Along the spectral dimension, macroscopic objects such
as aerosol and cloud particles have of course much smoother
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variations than molecules, particularly for absorption. Cross-
sections in Lorenz–Mie theory are represented as follows:

ξλx(r) = πr2 × Qx(2πr/λ), (1)

where Qx is the efficiency ratio partitioned into scattering
(x = s) and absorption (x = a) for a given size parameter.
No sub-index is used for the extinction cross-section, the sum
of scattering and absorption. In the limit of (liquid or ice)
water spheres much larger than λ, we have Q ≈ Qs ≈ 2; in
the opposite (Rayleigh scattering) limit of very small particles,
we have Q ≈ Qs ∝ (r/λ)4, hence

ξ
(Rayleigh)

λs (r) ∼ r6/λ4. (2)

The overall cross-section for scattering4 ξλs averaged over
a size distribution N(r) dominated by the population with
r � λ is thus expected to scale as r2, the mean square of the
particle size since that is the surface exposed to the incoming
beam. Moreover, the geometrical shape factor Q will be
exactly 2 for spheres by Babinet’s principle [47]. Absorption
is more of a volume than surface process, so the corresponding
cross-section ξλa will tend to scale as r3. It is also much
smaller than ξλs because the imaginary part of the complex
index of refraction is generally much smaller than the real
part. Figure 4 shows the extinction cross-section (times droplet
density, ‘σ ’ curve), and the ratio of the scattering to extinction
cross-section (‘�0’ curve). We note that droplet absorption
starts in earnest beyond 1.6 µm but, at the same time, there is
less solar energy to absorb. We will see further on that multiple
scattering makes bulk absorption a very strong function of
ξλa ∝ 1 − �0.

Wavelengths where particles absorb the most are at a
premium in remote sensing since they will give access to the
effective particle radius [48]

re = r3/r2. (3)

As for the extinction cross-section ξλ = ξλs + ξλa, it is
empirically represented as a power law:

ξλ ∼ λ−α, (4)

where α is known as the Ångström exponent. Gamma
distribution functions are a popular 2-parameter representation
of N(r), namely,

N(r) ∼ rb−1 exp [−(b − 1)r/rm] , (5)

where rm is the mode (requiring b > 1) and b defines the
shape of the distribution. For instance, the above-mentioned
C1 distribution is obtained for rm = 4 µm and b = 7
(leading to re = 6 µm). We note that (4) is exact for this
assumption in regimes where ξ(r) is a power law in the size
parameter 2πr/λ.

In the limit of particles very small with respect to λ,
the Rayleigh scattering cross-section in (2) is retrieved and
α ≈ 4, which is the basis of the classic explanation of

4 We use an overscore to denote averages over disorder in the particle
population, both spatial and with respect to size.

Figure 4. Spectral dependence of cloud optical properties in the
solar spectrum. Single-scattering albedo �0 = ξ s/ξ (short dashes)
in (18), asymmetry factor g (long dashes) from (20) and extinction
σ = ξ× droplet density (solid line, right-hand axis) are plotted
versus wavelength λ for the ‘C1’ cloud droplet-size distribution.
The VIS/NIR dividing line at 0.7 µm is highlighted, as well as
where silicon-based sensors become too inefficient and other
materials must be sought for light detection in the ‘shortwave’ IR
(or SWIR) where the available solar radiation is dwindling anyway.

the blue color of clear skies. In the limit of particles very
large with respect to λ, geometric optics become ever more
accurate and we have ξλ(r) ∼ r2 irrespective of λ, and
α is very small. Figure 4 shows the spectral dependence
of scattering and extinction cross-sections for cloud droplets
based on Lorenz–Mie theory and the C1 distribution. This
small value of α contributes to the characteristic whiteness
of clouds, but so does multiple scattering (as demonstrated
further on). Aerosol particle distributions have α somewhere in
between the Rayleigh and geometric-optics limits, and its value
from observations clearly informs us about the particle-size
distribution.

All of the above contributions of EM wave theory are about
transport coefficients encapsulated in particle cross-sections
for interaction with radiation. In particular, nothing has been
said about propagation through the cloudy atmosphere viewed
as an optical medium, nor about multiple scattering. In
the next subsection we introduce the highly successful—but
purely phenomenological—theory of radiative transfer, with or
without polarization. It is noteworthy that rigorous derivation
of the polarized (a.k.a. ‘vector’) radiative transfer equation
was obtained only quite recently by Mishchenko [49] from
microphysical predicates, i.e. Maxwell’s EM wave equations
and statistical optics. The key assumption is, as can be
expected intuitively, that the medium is ‘dilute’: inter-particle
distances are large with respect to λ. Each particle is therefore
in the far field of all the others. Mishchenko’s derivation is
for steady sources and spatially uniform particulate media. He
generalized his derivation to spatially variable media, but only
when the ‘clumps’ are small with respect to the MFP [50].
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Much of the work we present further on is for media that are
spatially variable over a wide range of scales that typically
include the MFP, and we also have a strong interest in transient
sources (namely, pulsed lasers).

2.3. Mesoscopic transport model: radiative transfer equation

Liouville’s theorem states that Hamiltonian particle dynamics
under a constant external force field F (x) preserves volume
in the particle’s phase space, hence phase-space density
f (t, x, v) for non-interacting particles, where v is velocity.
From there, Boltzmann’s equation expresses that any change
in f (t, x, v) for an ensemble of particles is due to
collisions, thus providing a basis for kinetic theory. The
linear Boltzmann/transport equation follows from the clear
distinction between ‘material’ particles, which are assumed
very massive (hence essentially stationary), and ‘transported’
particles, which move relatively fast and can be scattered or
absorbed by the material. We can also drop the (F /mass)·∇vf

term that would normally appear in the Lagrangian derivative
df/dt since we can generally neglect the effects of external
force fields on massless particles. We are left with a simple
Eulerian relation for detailed balance in a small phase-space
volume:

df

dt
= ∂f

∂t
+ v · ∇f = gains − losses. (6)

Now suppose that we are dealing with monokinetic
particles, the so-called ‘1-group’ transport: v ≡ cΩ and
f 
→ f1δ(v − c)/c2, f1 is the particle density in the phase
space made of R

3 for x (or a subset thereof) and the associated
two-dimensional space of directions for Ω. It is tempting
to view RT as a flow of light particles (photons), which it
is not since Mishchenko’s [51] microphysical derivation of
the RT equation (RTE) is purely classical. Radiant energy is
nonetheless redistributed dynamically in space and time, and
we need to know how. Also, we prefer to work with radiance
(a.k.a. specific intensity)

Iλ(t, x,Ω)=cEλf1λ(t, x,Ω), with Eλ =hνλ =ch/λ,

(7)

where h is Planck’s constant. Radiance has units of
W m−2 sr−1 nm−1. One often sees spectral radiance Iν =
Iλ|dλ/dν| using wavenumber ν measured in the conventional
spectroscopy units of cm−1: ν = 107/λ, when λ is in nm. In
view of (6), this seven-dimensional field is constrained locally
by the monochromatic integro-differential 3D RTE[

1

c

(
∂

∂t

)
+ Ω · ∇ + σλ(x)

]
Iλ

= σλs(x)

∫
4π

Pλ(x,Ω′ · Ω) Iλ(t, x,Ω′) dΩ′

+ Qλ(t, x,Ω). (8)

Here, we use
σλ(x) = n(x) × ξλ(x) (9)

to denote the extinction coefficient in m−1, where material
particle density n is the integral of N(r), cf (5), over all values

of r . Like the advection term in (6), this is a net loss for
the radiant energy budget in a small volume around the light
beam defined geometrically by the pair (x,Ω), so these two
terms are grouped on the left-hand side. On the other side of
the equation, we have the gains. First, we have in-scattering
where σλs = nξs denotes the scattering coefficient while the
‘phase function’ Pλ (cf figure 3) derives from the differential
cross-section for scattering, namely,

σλsPλ = n(x) × dξsλ

dΩ
. (10)

Note that we normalize the phase function so that∫
4π

Pλ(Ω′ → Ω) dΩ′ = 1, ∀Ω. Second, we have Qλ, denoting
a (volume) source term.

Mathematically, there is no difference between the above
time-dependent RTE and the linear Boltzmann equation used
in particle transport theory, primarily used for neutrons.
Physically, they are fundamentally different since, as sketched
above, the linear Boltzmann equation follows from coarse-
grained particle dynamics [52] while the RTE follows from
Maxwell’s equations using statistical optics methods [51].
At present, however, the rigorous derivation requires steady
sources and essentially uniform optical media. The general
(3D time-dependent) RTE in (8) remains a phenomenology.

We have so far neglected polarization. To account
for the transport of polarized light, we need to redefine I

as a formal four-dimensional vector, and Pλ as a 4 × 4
scattering matrix that can mix different polarization states.
In his classic monograph [7], Chandrasekhar gives the
complete phenomenological elaboration of polarized/vector
RT while Mishchenko’s microphysical derivation [51] captures
polarization by definition, being grounded in EM wave theory.
We have also assumed axially symmetric scattering, meaning
either spherical or randomly oriented material particles.

Using (8), RT computations can be performed one
frequency at a time, and then integrated as necessary over
λ. Because of this simplification of the radiation transport
physics, we will drop λ (or ν) subscripts from most of the
remainder. Finally, one might be surprised that we retain
the possibility of time-dependence in a paper on clouds and
sunlight, a very steady source indeed over time-of-flight
durations. The reason for this is that we will develop further on
a strong interest in sources that are Dirac δ’s in time, both for
heuristics and for exploratory observations using pulsed laser
sources.

The important local scale in transport is the MFP �,
which is the sole parameter of the basic transmission law
in homogeneous media of infinite extent. Indeed, ignoring
momentarily time-dependence, scattering, internal sources and
the spatial variability of σ , (8) reduces to Ω · ∇I = −σI . For
a given beam, distance from an arbitrary point x along Ω is
denoted s; we then have a simple ordinary differential equation
(ODE) to solve, dI/ds = −σI , hence I (s) = I0 exp(−σs)

(Beer’s law). We can interpret physically I (s)/I0 from this
direct transmission law as the probability that the transported
particle will cover a distance s, or more, before suffering a
collision of any type. The probability density function (PDF)
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of the random variable s is therefore σ exp(−σs). The qth-
order moment of this PDF is 〈sq〉 = (q + 1)〈s〉q (q > −1),
where (x) is Euler’s gamma function and, for q = 1,5

〈s〉 = � = 1/σ (11)

is the MFP, from the given extinction of the infinite uniform
medium.

What if the optical medium is spatially heterogeneous?
Then the transmission law becomes specific to the point x and
direction Ω of departure:

T (x,Ω; s) = exp

(
−

∫ s

0
σ(x + Ωs ′) ds ′

)
. (12)

So will the MFP, and all other moments of s. The spatial-
directional and/or ensemble-average transmission law can be
denoted T (s) = T (x,Ω; s). What are its properties?

This fundamental question has been investigated recently
by Kostinski [53], who proceeds from a refreshing discrete-
point statistical perspective on particle transport theory in
general, as well as by the present authors [54], who use
the conventional (continuum-based) RTE. Either way, the
prediction for T (s) is that it is sub-exponential in the following
sense: for the associated step PDF, |dT /ds|, moments obey
〈sq〉 > (q + 1)〈s〉q for q > 1. This implies that the large-s
decay of T (s) is slower than the exponential law dictated by the
actual MFP derived from the ensemble-average transmission
law. Moreover, this ensemble-average MFP 〈s〉 is greater
than 1/σ(x), the naive prediction using (11). For a large
class of media with long-range spatial correlations, ensemble-
average MFP is indeed given by 1/σ(x) [54]. We can think
of σ(x) as the extinction associated with the mean particle
density, i.e. n(x)ξ , noting that this assumption is equivalent to
the reasonable requirement of total mass or material particle
number conservation.

The general ‘1+3+2 dimensional’ monochromatic RT
problem on (t, x,Ω) for a given medium becomes completely
determined only after stating initial and boundary conditions,
which we will defer until we discuss specific cloud geometries.
At present, we only need to note (i) that the optical medium
M ⊆ R

3 can be considered convex with no loss of generality
(just set coefficients to 0 as necessary) and (ii) that conditions
on the boundary ∂M can be ‘absorbing’ (i.e. no incoming
radiation) or express primary sources (e.g. solar illumination)
or secondary sources (i.e. partial or total reflection, with or
without bi-directional redistribution).

2.4. Macroscopic transport model: diffusion equation

In the case of clouds, we can go one step further away
from the microphysical model introduced in in section 2.2,
leading to the RT equivalent of the hydrodynamic limit in
kinetic theory. This involves averages of (8) over direction
space. To this effect, we introduce here the standard (z-axis)
polar angles (θ, φ) to describe Ω, thus �z = µ = cos θ ,
�x(y) =

√
1 − µ2 cos(sin)φ and dΩ = dµ dφ.

5 We use 〈angular brackets〉 to denote ensemble averages of quantities
dependent on random processes implicit in transport theory.

2.4.1. Definitions and derivation. Following the original
derivation by Eddington in 1916 [55], we define the moments

J (t, x) =
∫

4π

I (t, x,Ω) dΩ, (13)

F (t, x) =
∫

4π

ΩI (t, x,Ω) dΩ, (14)

K(t, x) =
∫

4π

ΩΩI (t, x,Ω) dΩ, (15)

known in RT as the scalar (a.k.a. actinic) flux, vector flux and
tensor flux, respectively. These quantities all have well-known
counterparts in kinetic theory: U = J/c is the energy density
of the radiation field, F its current density and P = K/c its
pressure tensor.

We then have the following expressions for the
conservation of energy and momentum:

c−1 ∂J

∂t
+ ∇ · F = −σa(x)J + qJ (t, x), (16)

c−1 ∂F

∂t
+ ∇ · K = −σt(x)F + qF (t, x), (17)

where the new source terms follow from q(t, x,Ω) in (8)
using the definitions in (13)–(14). Two new coefficients have
also appeared. First, we have the absorption coefficient,
σa = σ − σs = (1 − �0)σ , where we introduce the very
useful ‘single scattering albedo’ parameter:

�0 = σs/σ. (18)

Second, we have the transport extinction,

σt = (1 − g)σs + σa = (1 − �0g)σ, (19)

where, letting µs = Ω′ · Ω

g = 2π

∫ +1

−1
µsP(µs)dµs (20)

is known as the ‘asymmetry factor’ of the phase function,
the mean cosine of the scattering angle. It is notable that
droplet-size distributions observed in boundary-layer clouds
yield g ≈ 0.85 in the solar spectrum (cf figure 4) with
remarkably small cloud-to-cloud variability [56]. Higher-level
ice clouds (and most aerosol) tend to have somewhat smaller
values, g ≈ 0.8 [57] or even less [58]. Particles much smaller
than the wavelength are essentially Rayleigh scatterers, and
their g is close to 0.

Can we close the system of equations in (16)–(17)? A
simple closure follows if we brutally truncate the expansion
of I (t, x,Ω) in spherical harmonics at first order (a ‘P1’
approximation in transport terminology):

I (t, x,Ω) ≈ [J (t, x) + 3Ω · F (t, x)] /4π (21)

and, accordingly,

P(x,Ω′ · Ω) ≈ [1 + 3g(x)Ω′ · Ω]/4π (22)
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for the phase function. This immediately tells us that the
radiation pressure tensor K/c from (15) is isotropic, i.e. off-
diagonal components vanish and on-diagonal components are
equipartitioned (each one equal to 1/3 of the radiant energy
density J/c). By substitution into (17), we obtain

∂tF + ∇J/3 = −σt(x)F + qF (t, x), (23)

which complements the exact conservation law in (16).
The PDE system in (16) and (23) is known as the

telegrapher’s problem. It is causal in the sense that bulk
velocities do not exceed c. However, the preferred diffusion
model uses one more approximation: to neglect the time
derivative in (23), hence

F = −∇J/3σt(x) + qF (t, x)/σt(x). (24)

This is the desired constitutive law, a closed expression for the
vector flux that can be explicitly combined with (16). It is the
radiative counterpart of Fick’s law of diffusivity,

F = −(D/c)∇J, (25)

where
D(x) = c/3σt(x) = c�t(x)/3, (26)

plus a local correction for source anisotropy, namely,
�t(x)qF (t, x). Equations (16) and (24) thus define the
radiation diffusion model, as an approximation to full time-
dependent 3D RT theory. We can expect violations of causality
in this approximation, but they are limited for the most part to
early times in the important case of ‘δ-in-time’ sources. We
experimented with the more accurate telegrapher’s transport
problem in (16) and (23) for space–time Green function
estimation [59], but the resulting expressions are complex, and
it may be possible, in practice, to avoid those regions of space–
time where diffusion breaks down.

Finally, we note that there are other derivations of the
macroscopic transport model encapsulated in diffusion theory,
with the most insightful coming from asymptotic analysis of
the general RTE; the interested reader is referred to the original
papers by Larsen [60] and Pomraning [61].

2.4.2. Reconsideration of directional details. In view of
(25)–(26), we recognize that the transport MFP

�t = 1/σt (27)

is a locally defined length scale that matters a lot in diffusion
theory; in the absence of absorption, there is no other to work
with. It is easy to see that �t is larger than � in (11) by a factor

1

1 − �0g
=

∞∑
n=0

(�0g)n. (28)

It can be shown [62, 63] that the nth term in this sum is
the contribution from the order n in an infinite sequence of
forward-biased scattering events, as quantified by g in (20).
We can thus think of the transport MFP as the distance covered

on average by a collimated beam of light incident on a forward-
scattering medium before it has all but lost the memory of its
original direction.

Underlying this spatial ramification of a directional
memory effect, there is a diffusion process in direction space.
If a light beam starts, for simplicity, with a vertical direction
cosine µ0 = 1, hence θ0 = 0, its first scatter will send it off
in a random azimuthal direction φ1 and a random polar angle
θ1, according to the scattering phase function. This is nothing
more than a first step in a discrete-time random walk on the
unit sphere: (θn, φn), n ∈ N. Since that space is finite, we
estimate that n� ≈ 1/(1−�0g) is the characteristic number of
steps required to ‘dilute’ the original collimated beam over the
whole sphere. Now, each step into this directional memory loss
process leaves a trace in propagation space. The first step s1

moves, on average, the transported particle a distance 〈s〉 = �

along the positive z-axis; the next step moves it 〈µ1s〉 = g�

further along the same axis and �0 times that to factor in the
possibility of suffering an absorption. That is the physical
interpretation of the first two terms of the expansion in (28),
and a recursion argument [62] shows that subsequent steps
contribute all the others.

Reconsidering figure 3, it is intuitively clear that this
directional diffusion may be better described as a 2-level
process: first move around within the forward diffraction
peak, based on another (smaller) value of the elementary step
variance, then populate the rest of the sphere using an effective
g that is smaller than 0.85. The first part captures the spirit of
‘small-angle’ approximation in RT. It plays an important role
in the transmitted radiation field of hazes and cirrus clouds,
and it is responsible for the silver lining of optically thick 3D
clouds (often a visually stunning phenomenon). However, it is
not important for the reflected radiation. Neither is it important
for the truly diffuse transmission at any optical depth, since it
is a perturbation around the direct beam. In contrast, diffuse
transmission as well as reflection will be dominated by the
second angular diffusion process controlled by an effective
g′ < g. We define g′ formally in the next subsection.

2.4.3. Extension of the range of validity. Under what
conditions do we expect the diffusion/P1 theory to be a
reasonable approximation to atmospheric radiation transport?
It is in essence an asymptotic limit of transport [60, 61] where
the small parameter is the ratio of the transport MFP to the
outer scale of the system. In other words, we recognize here
the small Knudsen numbers that we have already mapped to the
opaque cloudy regions of the atmosphere. Another condition
that favors diffusion (thinking of long random walks) is weak
absorption. In the limit of no absorption (no volume sinks)
whatsoever and no volume sources, the diffusion equations in
(16) and (24) can be combined into the familiar heat/diffusion
equation: [

c−1 ∂

∂t
− ∇ · (D∇)

]
J = 0. (29)

If furthermore the boundary sources are steady and extinction
(hence diffusivity) is uniform, we obtain the Laplace equation,
−∇2J = 0, for which many analytical and numerical solution
methods exist.

12
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What are diffusion/P1 theory’s main vulnerabilities? Even
in regimes where physical intuition tells us that radiation
transport should be diffusive, we can maybe improve its
performance. Indeed, we suspect that the 2-term spherical-
harmonic expansions of I (t, x,Ω) in (21) and certainly of
P(x, µs) in (22) can be very unrealistic in clouds. In the case
of radiance, (21) fails near collimated sources such as solar or
laser illumination. In the case of the phase function, we recall
that cloud particles have very forward-peaked scattering. To
wit, (22) yields unphysical negative values in backscattering
directions if g(x) > 1/3, which includes the values of interest
for clouds (0.75–0.85).

The fix is the same for both problems: the radiance field is
broken naturally into its un-collided and diffuse components,
and the phase function is recast as the sum of a Dirac δ

in the forward direction—physically, just a boost in ballistic
propagation—and a residual 2-term expansion. So we think of
(21) as only the diffuse radiance, and replace the 1-parameter
model phase function in (22) with the 2-parameter model in

P(x, µs) ≈ 1

4π
[f (x)2δ(1 − µs)

+ (1 − f (x))(1 + 3g′(x)µs)]. (30)

This leads to the following rescaling of the local optical
properties:

σ ′ = (1 − �0f )σ,

1 − � ′
0 = 1

1 − �0f
(1 − �0),

1 − � ′
0g

′ = 1

1 − �0f
(1 − �0g),

(31)

where f is the fraction of ‘δ-scattering.’ The smaller extinction
reflects the boost in ballistic propagation while the effective
absorption is increased. Finally, physically meaningful
values of

g′ = g − f

1 − f
(32)

can now go up to 1/3(1 − f ) in (30) and (31); so it is better if
we can rationalize f � 2/3.

Following Joseph et al [64], we can take f = g2, hence
g′ = g/(1 + g), because it fits the two first spherical-harmonic
moments of the popular Henyey–Greenstein (H–G) model
phase function [65] illustrated in figure 3. It is given by

P(µs) =
(

1

4π

)
1 − g2

(1 + g2 − 2gµs)3/2
, (33)

and has gl as its lth spherical-harmonic moment. For liquid
water clouds, where g ≈ 0.85, we obtain f ≈ 0.72
(exceeding 2/3), hence σ ′ ≈ 0.28σ and g′ ≈ 0.46 when
� ′

0 = �0 = 1. Alternatively, the whole diffraction peak—
half of the scattered energy for particles with very large
size parameters (by Babinet’s principle)—can be recast as
prolonged propagation in the original direction: hence f = 0.5
(not exceeding 2/3), thus σ ′ ≈ 0.5σ and g′ ≈ 0.7 when
� ′

0 = �0 = 1.

3. Cloud geometry models, solutions of the
corresponding RT problems, and applications

Several things that happen to the radiant energy after leaving its
source have already been mentioned—propagation, scattering
and absorption—but there is one more possibility. Radiation
can propagate to a boundary point and then escape the medium
altogether. When integrated over direction and space, escaping
radiation matters hugely for the radiant energy balance of the
medium.

This leads us to the natural mathematical completion of
the RT problem statement by setting the boundary conditions
(BCs). In a nutshell, we need to quantify the radiant energy
entering or re-entering, via reflection, the medium through ∂M ,
the boundary of a convex set M ⊆ R

3 where we wish to solve
the RTE.

3.1. The plane-parallel slab

3.1.1. Boundary conditions and escaping radiation. The
simplest possible cloud geometry is a plane-parallel slab
Mpp(H) = {x ∈ R

3; 0 < z < H } and the simplest BCs
are the ‘absorbing’ type, expressing that no radiation enters
Mpp(H):

I (t, x, y, 0,Ω) = 0, �z = µ > 0, (34)

I (t, x, y, H,Ω) = 0, �z = µ < 0, (35)

for t � 0 (the usual time domain) and (x, y)T ∈ R
2. Of course,

in the above case of absorbing BCs, the source term Q(t, x,Ω)

in (8) will not vanish everywhere, and it can in fact be used
to specify solar irradiation of Mpp(H). We model this internal
source as a steady spatially uniform mono-directional beam
aligned with Ω0 = Ω(θ0, φ0) that is directly transmitted from
the z = 0 plane, and then once scattered:

Q(x,Ω) = F0σs(x) P (x,Ω0 → Ω)

× exp

[
−

∫ z

0
σ

(
x − �0x

z − z′

�0z

, y − �0y

z − z′

�0z

, z′
)

dz′

�0z

]
,

(36)

where F0 is the (spectral) solar flux in W m−2(nm−1 of
wavelength, as needed). Note that we have encoded here
a beam entering the slab at z = 0, which we will always
view as the illuminated upper boundary (z increases downward
here). Alternatively, we can set Q(x,Ω) ≡ 0 and use a
straightforward variation of (34) to do the same job:

I (x, y, 0,Ω) = F0δ(Ω − Ω0), µ, µ0 > 0, (37)

where µ0 = �0z. In this case, the estimated radiance field will
contain the un-collided (directly transmitted) light as well as
the diffuse light. For an isotropic source, the right-hand side
of (37) would be simply F0/π . We note that we can assume
F0 = 1 without loss of generality since the linearity of the RTE
can be invoked to sum over wavelengths, as weighted by F0λ,
after the fact.
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If the cloudy medium Mpp(H) is above a partially
reflective surface at z = H , then there is re-entering radiation
to account for. In this case, (35) is modified, becoming

I (x, y, H,Ω)

= α(x, y)

∫
µ′>0

Ps(x, y,Ω′ → Ω)I (x, y, H,Ω′)dΩ′,

µ < 0, (38)

which is designed to look like the in-scattering term in (8).
Here, α is the local surface albedo, defined as the ratio of
up-welling to down-welling hemispherical fluxes,

F±(x) =
∫ +π

−π

dφ

∫ ±1

0
I (x,Ω)µ dµ, (39)

at z = H :

α(x, y) = F−(x, y, H)/F+(x, y, H). (40)

The surface phase function, denoted here by Ps, is normalized
to

∫
µ′>0 Ps(Ω′ → Ω)dΩ′ = 1, ∀µ < 0; it is used

here as a representation of the bi-directional reflectance
distribution function (BRDF) [66, 67]. Two contrasting
examples of surface scattering/reflection are the isotropic
(a.k.a. Lambertian) case, Ps(Ω′ → Ω) = µ′/π and
the specular (a.k.a. Fresnel) case, Ps(Ω′ → Ω) =
δ(µ′ + µ)δ(φ′ − φ).

Of particular interest in cloud remote sensing are the
radiance fields that describe steady solar radiation escaping
the plane-parallel medium at its upper and lower boundaries:
I (x, y, 0,Ω), µ < 0 and I (x, y, H,Ω), µ > 0, respectively,
for observers above and below the cloud layer. It is convenient
to normalize the reflected radiance such that it reads as the
effective albedo the cloud would have if the (sampled) radiance
field was uniform in direction:

R(x, y,Ω) = πI (x, y, 0,Ω)/µ0F0, µ < 0; (41)

T (x, y,Ω) = πI (x, y, H,Ω)/µ0F0, µ > 0, (42)

where we have similarly recast the transmittance field.
These functions describe how the cloud layer redistributes
the spatially uniform and unidirectional solar beam both
horizontally and directionally. In space-based observation, one
is often looking straight down (Ω = −ẑ) at the nadir radiance
field while the detector overflies the scene. In ground-based
observation, a static detector often looks straight up (Ω = +ẑ)
and captures zenith radiance as the clouds are advected by
(Taylor’s ‘frozen turbulence hypothesis’ is often invoked to
interpret a time series of zenith radiance as an approximation
of the horizontal spatial variations).

In the simpler diffusion theory for RT in the denser clouds,
the BCs need to be stated as well. Physically, one needs to
constrain the fluxes of radiant energy crossing the upper and
lower boundaries. In plane-parallel geometry, we first need
to evaluate hemispherical fluxes in (39) that cross an arbitrary
constant-z plane in the ± directions, for given J and F :

F± = J/2 ± Fz

2
, (43)

from (13)–(14) and (21). Restoring time-dependence, the
absorbing BCs in (34)–(35) thus become

4F+(t, �ρ, 0) = J (t, �ρ, 0) + 3χFz(t, �ρ, 0) = 0, (44)

4F−(t, �ρ, H) = J (t, �ρ, H) − 3χFz(t, �ρ, H) = 0, (45)

for all �ρ = (x, y)T ∈ R
2 and t > 0 and where, until further

notice, we take χ = 2/3. In the above case of absorbing
boundaries, we need at least one non-vanishing volume source
term. For the steady solar beam, (36) yields

qJ (x) = F0σs(x, y, z)

× exp

[
−

∫ z

0
σ

(
x − �0x

z − z′

�0z

, y − �0y

z − z′

�0z

, z′
)

dz′

�0z

]
,

(46)

qF (x) = qJ (x)g(x)Ω0. (47)

When the surface at the lower boundary is partially reflective,
as in (38), we mandate the time-dependent version of (40) and,
accordingly, the left-hand side of (45) becomes

[1 − α( �ρ)]J (t, �ρ, H) − 3χ [1 + α( �ρ)]Fz(t, �ρ, H) = 0. (48)

Solar radiation escaping a plane-parallel cloud, a priori
with internal 3D structure, is characterized in diffusion theory
by the local hemispheric fluxes

R( �ρ) = F−( �ρ, 0)/µ0F0 = J ( �ρ, 0)/2µ0F0, (49)

T ( �ρ) = F+( �ρ, H)/µ0F0 = J ( �ρ, H)/2µ0F0, (50)

when (44)–(45) have been used, recalling that this assumes
the internal source model in (46)–(47). Consequently, the
transmittance field here is only for the diffuse component; if
total transmittance is required, one must add the local directly
transmitted flux (normalized to the incident flux):

Tdir(x, y) =

exp

[
−

∫ H

0
σ

(
x − �0x

H − z

�0z

, y − �0y

H − z

�0z

, z

)
dz

�0z

]
.

For an isotropic boundary source, we have F0/π on the
right-hand side side of (37); its diffusion counterpart in (44)
is then

4F+(t, �ρ, 0) = J (t, �ρ, 0) + 3χFz(t, �ρ, 0) = 4F0. (51)

Notably, the same happens to the collimated source model
at the upper boundary in (37) since the diffusion framework
cannot distinguish directional and isotropic boundary sources.
In this case, it is conventional to treat χ , which multiplies
Fz(t, �ρ, 0) and Fz(t, �ρ, H) in boundary conditions (44)–(45),
as an adjustable parameter that can differ—although typically
not much—from 2/3. This numerical parameter is known
as the ‘extrapolation length’ (reckoned in units of �t) and
it enables diffusion results to follow more closely transport-
theoretical predictions. Physically, χ is used to compensate for
the fully expected weakness of diffusion theory in the radiative
boundary layer, i.e. up to 1–2 times �t in vertically measured
distance from either boundary. There is no violation of energy
conservation here as long as the same substitution is made in
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(49)–(50) for the hemispherical fluxes in the opposite direction
(i.e. for escaping radiation). Specifically, we now have

R( �ρ) = J ( �ρ, 0)/2F0 − 1, (52)

T ( �ρ) = J ( �ρ, H)/2F0, (53)

where it is understood that (i) the reflected flux must now be
derived from an estimate of J ( �ρ, 0) that includes the incoming
radiation and (ii) the transmitted flux is now diffuse + direct.

3.1.2. Mainstream one-dimensional radiative transfer. So
far, we have made no assumptions about the internal structure
of the plane-parallel medium, nor about the spatial variations
of the optional lower surface BRDF. A widespread assumption
that eases computations is exact translational symmetry in the
horizontal ( �ρ) plane. This leads to the so-called 1D RT theory6

where optical properties and at least the radiance field can
still vary in the vertical (z) direction. This is of course a
gross approximation of real clouds that should always be—
but still too rarely is—questioned before use. Depending
on the specifics of the application (cloud type, tolerance to
error, etc), it is not necessarily a bad approximation, but often
is (cf section 6).

For a comprehensive survey of computational techniques
for solving the 1D RTE, we refer the interested reader to the
monograph edited by Lenoble [68]. The most popular are
identified by their approach to Ω-space: spherical harmonics
(‘PN ’ methods) and discrete ordinates (‘SN ’ methods); both
approaches benefit from Fourier mode decoupling in the
azimuthal variable that follows directly from the invariance of
the slab medium and solar source under horizontal translation.
The adopted solutions in z-space are quite diverse: coupled
ODEs, eigenvalue methods, Gauss–Seidel iteration, successive
orders of scattering, invariant embedding, ‘adding/doubling’
(illustrated below in 1D, equivalently, S2 theory) or any other
technique.

One class of 1D RT models is fully tractable, and therefore
extensively used in atmospheric radiation science: uniform
slabs in the diffusion/P1 approximation derived above and/or
for two-stream/S2 models, i.e. when the angular quadrature is
reduced to two beams [69, 70]. The P3 model was also worked
out in closed form (as a special case of the S4 model with
Gaussian quadrature points and weights) [71]. It naturally
outperformed the standard P1 model [72, 73] and will likely
replace it over time in GCM shortwave schemes.

These simplified angular representations are expected to
become more accurate as the cloudy medium becomes more
opaque, i.e. optical thickness

τ = σH = H/� (54)

increases with H for a given extinction σ , equivalently, the
MFP � = 1/σ decreases for a given geometrical thickness
H . Very few other cloud geometries are amenable to
completely analytical treatment, one exception being uniform
spheres within the diffusion approximation (cf section 3.3 and

6 In the atmospheric RT community, only spatial dimensions are counted up
front.

references therein). Although far more relevant to aerosols
than clouds, the opposite asymptotic limit of transport theory,
τ vanishingly small, is amenable to the single-scattering
approximation. This computation, including flux estimation
via angular integration, can be performed analytically for a
number of geometries including slabs [74] and spheres [75].

In the two-stream model, diffusion-type equations arise
for the sum and difference of the up- and down-welling fluxes
and conversely, using the correspondence in (43). Intuitively,
this plane-parallel cloud geometry may be a reasonable
approximation to solar RT in the real world for single-layered
unbroken stratiform clouds, and possibly better still if spatial
and/or angular integrals are targeted, as in radiation energy
budget modeling, for instance, in GCMs.

3.1.3. 1D ‘adding/doubling’ and diffusion theory for �0 = 1.
In the procedure outlined above to derive boundary-leaving
radiances and fluxes, one necessarily solves the transport or
diffusion equations for all the points in the medium. This
may not be optimal when one is only interested in the overall
radiation budget, let alone remote sensing applications, where
only radiances and fluxes at the boundaries matter. The
adding/doubling method can be used to obtain directly R and
T as functions of �0 in [0, 1], g in [−1, +1] and τ � 0. To
illustrate this computational technique as well as the essential
transport physics of uniform slab clouds, we will invoke
‘literal’ 1D RT, i.e. where the entire steady-state radiance field
is reduced to {I+, I−} expressed in watts, with no steradians or
even m2 to worry about. In one spatial dimension, the phase
function reduces to the discrete probabilities of scattering
forward, pf = (1 + g)/2, or backward, pb = 1 − pf =
(1 − g)/2.

Suppose we know the reflectivity/albedo R = I−(0)/F0

and transmittance T = I+(H)/F0 of a 1D ‘slab’ (i.e. the
interval [0, H ]), for given optical properties {σ, �0, g}. If
these local properties are all uniform between z = 0 and
z = H , then only the non-dimensional product in (54) matters;
we can take either H or � (hence σ ) as unity without loss of
generality. Knowing {R, T }(τ ), can we compute it for τ + δτ ,
where δτ � 1? If we denote {r, t} = {R, T }(δτ ), then it is
not hard to show that

R + δR = r + Rt2/(1 − Rr) (55)

and
T + δT = tT /(1 − Rr), (56)

where the 1/(1 − Rr) factor accounts for any number of
reflections between the two layers: t × [

∑∞
n=0(Rr)n] × T in

transmission and without the last T but with R × t instead
for reflection. Since the additional layer is infinitesimally
thin, we have {r, t} ≈ {0+, 1−}, hence {R + δR, T + δT } ≈
{r + Rt2(1 + Rr), tT (1 + Rr)}. More specifically, we have

r = �0(1 − g)δτ/2 (57)

and
t = 1 − δτ + �0(1 + g)δτ/2 (58)
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if we invoke the single-scattering approximation. By
substitution, elimination and keeping only 1st-order terms, we
end up with the following coupled nonlinear ODEs to solve:

R′ = −2[1 − �0(1 + g)/2] R + [�0(1 − g)/2] (1 + R2),

(59)

T ′ = −[1 − �0(1 + g)/2] T + [�0(1 − g)/2] R T, (60)

where derivatives are with respect to τ , with initial conditions
{R, T }(0) = {0, 1}. The ODE in (59) is in the classic
Ricatti form.

Starting with the simpler case of conservative scattering
(�0 = 1), where we know that R + T = 1; the solutions of
(59)–(60) are then

R(τ) = (1 − g)τ/(2χ + (1 − g)τ), (61)

T (τ) = 1 − R(τ) = 1/(1 + (1 − g)τ/2χ), (62)

with χ = 1. Solution of the corresponding 1D diffusion
model (i.e. for slab geometry in three spatial dimensions) for
an isotropic boundary source leads to the same expressions
but with χ determined by the precise boundary conditions,
recalling that χ ≈ 2/3. The product (1 − g)τ in (61)–(62) is
the ‘scaled’ optical depth of the cloud. We see from (27) that
it is simply the distance ratio

τt = H/�t = σtH = (1 − g)τ (63)

in the present �0 = 1 case, clearly a key quantity in diffusive
transport theory. We note that the δ-rescaling transformation
in (31) leaves τt invariant.

When expanding (62) for τ � 1, we obtain T (τ) ≈
1 − (1 − g)τ/2χ , where we do not recognize the direct
transmission that should dominate: Tdir(τ ) = exp(−τ) ≈
1 − τ for normally incident collimated illumination; nor do
we see Tiso(τ ) = 2

∫ 1
0 exp(−τ/µ0)µ0 dµ0 ≈ 1 − 2τ for the

actual isotropic illumination. This reminds us that, for spatial
dimension � 2, the diffusion model targets only the optically
thick regime. The accuracy of the diffusion transport model
can, however, be improved for solar radiation by using the
internal anisotropic source terms in (46)–(47); see [70] for
details. This of course introduces a dependence on the cosine
of the solar zenith angleµ0, and opens up the possibility that the
δ-rescaling transformation in (31) will have a positive impact
on the diffusion model’s performance (with respect to the full
multi-stream transport model).

3.1.4. Three elementary applications. As a first application,
we return to the question of the intense whiteness of clouds
viewed in reflection geometry. We have already established
that clouds are very weakly absorbing in the visible spectrum
and their scattering properties are spectrally flat (cf figure 4).
Multiple scattering will always whiten clouds since any
dependence of τ on λ is significantly flattened after being
passed through the cloud albedo expression in (61), and more
so as the asymptotic diffusion regime (τt = (1 − g)τ � 2χ )
is approached. By the same token, the expression for diffuse
cloud transmittance in (61) also flattens the spectral slope but
simultaneously lowers the light levels, hence the uniformly

gray appearance of the base of thick stratus clouds or of the
non-illuminated side of cumulus-type clouds. So we would
very much like to know: how optically thick are clouds across
the visible spectrum?

Bohren et al [76] established empirically that a human
observer cannot distinguish the direction of the Sun through
a cloud of forward-scattering particles (g ≈ 0.85) when
τ exceeds 8–10; this is of course when the diffuse light
overwhelms not only the direct but also the forward-scattered
light. Based on (61), we are interested in comparing
numerically τ and 2χ/(1 − g). When equal, we have
R(τ) ≈ T (τ) ≈ 1/2; therefore, as τ approaches and increases
beyond 2χ/(1−g), clouds become powerful diffusers of light.
Values in the literature for χ range from 1/

√
3 ≈ 0.577 to

a transcendental number ≈0.7104, and we recall that liquid
water clouds have g ≈ 0.85 while their ice water counterparts
are closer to 0.75. So the range for 2χ/(1 − g) is 7–9 for
liquid clouds (very close to Bohren et al ’s empirical range)
and 5–6 for ice clouds. Interestingly, this is at the low end of the
climatology for low/warm clouds, which can thus be deemed
by and large diffusive, and at the high end for high/cold cirrus
(Ci) clouds, which indeed will rarely block the Sun completely
(and frequently display halos, Sun-dogs and other such single-
scattering phenomena [77]).

Clouds matter for the radiation part of the energy cycle
in the climate system, largely because they are optically thick,
and they also play a key role in the atmospheric part of the
hydrological cycle. So, as a second application, we ask: how
much water is there in a typical cloud?

This amount is given by its liquid/ice water path
(LWP/IWP) in kg m−2 defined as the vertical integral of
mass density of water in the cloud droplets or crystals, a.k.a.
liquid/ice water content (LWC/IWC) in kg m−3:

CWC(z) = n(z) × ρw × 4π

3
r3(z), (64)

where condensed water content (CWC), given by LWC + IWC
and ρw is the density of condensed water, ≈103 kg m−3, hence

CWP = LWP + IWP =
∫ H

0
CWC(z) dz. (65)

CWP, LWP or IWP can also be measured as the thickness (say,
in mm) of the layer of all the water of interest in clouds aloft,
were it all precipitated, which is the same as in (65) above but
without ρw in (64) and reducing all the length dimensions to,
say, mm. We now compare CWP and cloud optical depth

τ =
∫ H

0
σ(z) dz, (66)

where

σ(z) = n(z) × 2 × πr2(z) ≈ 3

2

CWC(z)/ρw

re
(67)

in the limit of large size parameters (Q ≈ 2 in Lorenz–Mie
scattering theory). If the 2nd and 3rd droplet-radius moments
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have the same vertical profile, i.e. re in (3) is invariant with
altitude, then [78]

τ = 3

2

CWP/ρw

re
. (68)

Equivalently, τ is 1.5× the ratio of CWP and re when expressed
in the same units. As an example, we can take τ = 15,
which yields the reasonable cloud albedo value of R = 0.63
for the canonical g = 0.85 and χ = 2/3 in (61); we also
take re = 10 µm, another often-used value (although far less
justifiably than g = 0.85). We then find that CWP is only
0.1 mm. This illustrates how so little water, if dispersed into
many small particles in the atmosphere, can provide powerful
reflectivity for the planet. Adding water vapor to the mix raises
the ‘precipitable’ water thickness to several millimeters in most
locales. So clouds use only a small fraction of all the water in
the atmosphere.

Finally, we note that solving (68) for CWP makes clear
why both τ and re are highly desirable retrieval products in
cloud remote sensing.

As a third and final application, we turn to the above-
mentioned indirect effect of aerosols on climate via cloud
albedo, a.k.a. the Twomey effect [16]. For clouds forming
in clean air, we can count on n ≈ 100 CCN cm−3; in polluted
air, this number can be 10× more. Consequently, r3 (hence re)
will have to go down and, for a fixed cloud water budget given
by CWP in (65) and (68), τ will necessarily go up. In view
of (61), this means more reflective clouds. In the absence of
further feedbacks, this will cool the climate. If, due to the larger
population of smaller droplets, precipitation is also delayed
or even suppressed, the longer life-cycle of clouds goes in
the same direction. The tough question about dynamical and
microphysical feedbacks then becomes critically important,
and is being actively investigated.

3.1.5. 1D ‘adding/doubling’ and diffusion theory for �0 < 1.
The case of non-vanishing absorption (�0 < 1) is more
involved. For the diffusion or S2 models, we find

R(τ) = 1 − X2

1 + X2 + 2X coth Y
(69)

and

T (τ) = 2X cosh Y

1 + X2 + 2X coth Y
, (70)

where

X = χ
√

d(1 − �0)/(1 − �0g) = χ�t/Ld (71)

and
Y =

√
d(1 − �0)(1 − �0g) τ = H/Ld (72)

with d = 1, 2, 3 being the number of spatial dimensions. It is
readily shown that all the factors of 3 in (21)–(26) and (44)–(45)
ultimately come from the three spatial dimensions considered
therein. In particular, the d = 1 case (with χ = 1) in (69)–(72)
is the general solution of the Riccati ODE system in (59)–(60).
The d = 3 case has naturally attracted considerable attention in
the atmospheric RT literature [70, 79, 80, among many others].

A new length scale appears:

Ld = �t

/√
3(1 − �0)

1 − �0g
= 1/

√
3(1 − �0)(1 − �0g) σ

(73)

in d = 3; quantities X and Y are ratios of Ld with the
extrapolation length and the slab thickness, respectively. It
is commonly known as the ‘diffusion length’ of the medium.
When Ld → ∞ (�0 → 1), the expressions in (69)–(70)
revert to (61)–(62) for any choice of d. The key (local) scale
ratio here,

�t/Ld = X/χ =
√

3(1 − �0)

1 − �0g
, (74)

is known as the ‘similarity’ factor. We note that the δ-rescaling
transformation in (31) leaves both X and Y , hence �t and Ld,
invariant. So no performance improvement can be expected
here; again, that calls for diffuse/direct separation and better
solar source representation using anisotropic internal source
terms.

We therefore expect absorption to matter when Ld � H

(Y � 1), equivalently,
√

(1 − �0g)/3(1 − �0) � τt = σtH ,
which in diffusion theory should itself be � unity. In this non-
conservative case, the finite rate of radiant energy absorption in
the slab is A(τ) = 1−[R(τ)+T (τ)] in units of F0. Like R(τ),
A(τ) rises from 0 to an asymptotic value. For the isotropic
source model leading to (69)–(70) in three spatial dimensions,
we have

A(∞) = 1 − R(∞) = 2X

1 + X
≈ 2χ

√
3(1 − �0)

1 − �0g
, (75)

where we recognize the ratio in (74). This is a strong function
of (1 − �0) that results physically from the effectiveness
of absorption when the transport is dominated by multiple
scattering. To assess the power of multiple scattering as a
catalyst of absorption, we focus on clouds where A(∞) ≈
R(∞) ≈ 1/2. This occurs when 1 − �0 ≈ (1 − g)/48χ2,
which is in the range 0.006–0.01 (depending on the choice
of χ ) when g = 0.85: less than 1% of the collisions result
in absorption. Furthermore, returning to finitely thick clouds,
the approach to this asymptotic regime is exponentially fast,
going as T (τ) ∝ exp[−τt

√
3(1 − �0)/(1 − �0g)]. This high

sensitivity of cloud reflectivity to (1−�0) is excellent news for
remote sensing determination of re. Recall from section 2.2
that σa = n ξa scales roughly as r3, so (1 − �0) will go
as re. Fortunately there are several NIR wavelengths where
condensed water has absorption bands. We can thus link clouds
not only to the energy cycle (via r2) but also to the water cycle
(via r3).

Absorption by cloud particles has important consequences
for the solar radiation energy budget estimation as well as
for satellite and ground-based remote sensing, particularly of
cloud droplet size since, as previously noted, 1 − �0 = σa/σ

scales as re. On a related note, the rapidly flat asymptotic
behavior of R(τ) as τ → ∞ explains why opaque aerosol
plumes composed of smoke from wild fires or volcanic ash are
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a barely bluish shade of gray, and sometimes almost white, in
spite of the tiny size of the particles. They may be Rayleigh-
type scatterers, but they are also strongly absorbing; therefore,
as in the case of clouds, multiple scattering quickly flattens the
spectral behavior as opacity increases.

Since diffusion naturally delivers boundary fluxes and
absorption rates, it is ideally suited for computation of the solar
radiation budget. Beyond the version presented here explicitly,
one can include the important dependence on solar zenith angle
(SZA) cosine µ0, which by definition varies over the globe,
if the more sophisticated (direct/diffuse separated) version of
the model is used. It is in fact the one used routinely in this
task for GCM modeling, where it is known as the δ-Eddington
model [70]. Unresolved spatial variability, however,
remains a challenge in this application, to be discussed
further on.

For remote sensing applications, one needs to go a step
further and access the dependence on the viewing geometry.
This geometry is captured by µ and φ − φ0, the difference in
azimuth between the (the so-called ‘principal’) plane, which
contains the normal to the slab and the Sun and the observer’s
plane. In view of the sheer volume of remote sensing data, we
would like to do this without reverting to numerical solutions
of the full (multi-stream) 1D RTE. That is precisely the goal
of ‘asymptotic’ RT theory. For a comprehensive survey of this
modeling framework and numerous applications, we refer the
interested reader to Kokhanovsky’s recent review paper [81].

3.2. A new application for 1d RT: exploitation of the solar
background in lidar

One person’s noise is another person’s signal. In this section,
we will show two examples of how noise can be treated as
a signal; the ‘new’ signal can be then used for reaping a new
harvest of information on clouds. We target ground- and space-
based lidars.

3.2.1. Ground-based micro-pulse lidar (MPL). MPL,
developed in 1992 [86], is now widely used to retrieve heights
of cloud layers and vertical distributions of aerosol [87].
Conventional lidar observation is predicated on 1D time-
dependent RT in the single-scattering limit in the special case
of scattering through 180◦. A periodic train of laser pulses
is transmitted into the vertical direction and the collocated
receiver points in the same direction, with a FOV just big
enough to contain, within tolerance, the slightly diverging
transmitted beam. The MPL’s time-dependent returned signal
is proportional to the amount of light backscattered by
atmospheric molecules, aerosols and clouds. Measured photon
counts are converted into attenuated backscatter profiles. In
this process, noise sources need to be accounted for [88, 89].
A significant source of noise present at all times is solar
background light measured by the MPL detector in addition
to backscattered laser light.

When lidars point straight up, the background noise is
the diffusely transmitted sunlight in zenith radiance, which
has been extensively used to retrieve cloud optical properties
[90, 91]. However, the solar background signal is given in units

Figure 5. Normalized zenith and nadir radiances versus cloud
optical depth. Calculations from the 1D DIScrete Ordinate RT
(DISORT) code [82] for SZA = 60◦. Surface is black and the C1
phase function, as specified by Garcia and Siewert [83], was used.

of photon counts and, for retrieval purposes, photon counts
must be first converted to actual radiance. This can be done
in a laboratory or using collocated measurements of zenith
radiance. For MPL solar background calibration, we used
a collocated multi-spectral photometer that tracks the Sun if
not hidden by clouds in a narrow field-of-view (FOV). This
is precisely what a standard Cimel instrument does for the
AERONET (AErosol RObotic NETwork) [92]; it also provides
zenith radiance either as part of its routine observations in the
principal plane or in its ‘cloud mode’ [90].

After solar background calibration, we can translate
measured zenith radiance to cloud optical depth τ . In contrast
to nadir radiance, zenith radiance is not a one-to-one function
of cloud optical depth; see figure 5. Two cloud optical depths
give the same zenith radiance: one for thinner clouds, the other
for thicker clouds. Thus, it is impossible to unambiguously
retrieve cloud optical depth from solar background signal
of a one-channel MPL. To remove this ambiguity, a rule is
needed to distinguish thick from thin clouds. Chiu et al [84]
proposed a reasonable criterion assuming that, if a lidar beam
is completely attenuated, the detected clouds have the larger
optical depth.

Figure 6 illustrates two hours of observations of the
MPL at NASA’s Goddard Space Flight Center (GSFC),
Greenbelt, MD, on 29 October 2005. Calibrations of MPL
solar background signals were conducted against one year
of principal plane observations of the collocated AERONET
Cimel. As we can see from the time series of vertical
backscatter profile of MPL (panel 6(a)), there was a somewhat
broken cloud field. To separate thin from thick clouds, it
was assumed that clouds were thin if the returned signal
was not completely attenuated. Figure 6(b) shows the time
series of retrieved cloud optical depth. The retrieved values
were validated against an AERONET Cimel operated in cloud
mode [90, 93]. The mean cloud optical depths from MPL
and Cimel are 41 and 44, respectively, and their correlation is
around 0.86. Except for a few outliers, errors of retrievals from
MPL are around 10–15% compared with those retrieved from
Cimel.
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Figure 6. Ground-based MPL observations at NASA–GSFC.
(a) Time series of range-corrected vertical backscatter profiles.
(b) Corresponding time series of cloud optical depths retrieved
from MPL and Cimel (cloud mode). (b′) Same as the last third of
panel (b), but co-plotted with the two possible optical depths
that correspond to the same zenith radiance.
Adapted from Chiu et al [84].

However, it is not always possible to separate thinner from
thicker cloud. In figure 6(b′) we have plotted together the two
possible optical depths; the solid line corresponds to smaller
optical depths and the dashed one to larger optical depths.

For certain radiance values, these two optical depths are
substantially different and it is easy to remove any ambiguity
using a ‘returned’ or ‘not-returned’ signal. For instance, when
lidar pulses are completely attenuated (not-returned), the larger
cloud optical depth is the obvious choice (e.g. 16.8–17.1 UTC).
Conversely, when lidar pulses are not completely attenuated,
the smaller optical depth is the clear solution (e.g. 17.25 UTC).
The problem arises when both of these optical depths result
in completely attenuated lidar pulses. In these cases, the
margin of difference is too small to confidently determine
which optical depth is the correct solution (cf circled data in
figure 6(b′)). As a result, τ values ranging approximately from
3 to 15 are hard to resolve. Retrieval of these intermediate
optical depths may require further information, such as another
lidar wavelength or additional sensors.

3.2.2. Space-based geoscience laser altimeter system (GLAS).
As for the MPL, laser pulses transmitted from GLAS on board
ICESat (Ice, Cloud and land Elevation Satellite) and other
space-borne lidars can only penetrate clouds to a depth of
a few MFPs. As a result, only optical depths of thinner
clouds (less than ≈3 for GLAS) are retrieved reliably from
the reflected lidar signal. We illustrate here possible retrievals
of optical depth of thick clouds using solar background light
by treating the GLAS receiver as a solar radiometer. As in
the case with ground-based lidars, we first need to calibrate
the reflected solar radiation received by the photon-counting
detectors. The solar background radiation is regarded as a
noise to be subtracted in the retrieval process of the lidar
products.

Yang et al [85] recently used three calibration methods
that agreed well with each other: (1) calibration with
coincident airborne and GLAS observations; (2) calibration
with coincident Geostationary Operational Environmental
Satellite (GOES) and GLAS observations of deep convective
clouds; (3) first-principles calibration, using the optical depths
of thin water clouds over ocean readily retrieved by GLAS’s
active remote sensing. Cloud optical depth was also retrieved
from the calibrated solar background signal using a one-to-one
relationship similar to the one shown in figure 5, but for the
known SZA.

To illustrate how passive remote sensing with GLAS
complements its original active remote sensing, we use a thick
marine Sc cloud observation. The Sc scene (figure 7(a))
was recorded by GLAS on 1 November 2003. The cloud
deck is optically thick and the standard GLAS active remote
sensing was unable to retrieve its optical depth. However, this
information can be obtained using solar background signal.
Figure 7(b) shows the retrieved cloud optical depth field. The
signal physics are the same here as for the MPL. The problem of
ambiguity in τ does not arise here, but the reflected radiance
signal levels off for large τ and, moreover, the receiver can
saturate. Although we do not in this case have independent
validation data, we are confident the same retrieval accuracy
can be achieved as for the MPL, at least for moderately opaque
clouds.
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Figure 7. GLAS observation of a thick marine stratocumulus deck
over the southern Pacific Ocean: the 1 November 2003, transect
goes from 35.13◦–43.29◦ S and 84.30◦–85.80◦ W. (a) 0.532 µm
backscattering image and the corresponding solar background
photon counts in units of photons/bin; (b) cloud optical depth
retrieved from the 0.532 µm solar background at 0.2 s resolution
(1.4 km). Adapted from Yang et al [85].

3.3. The spherical cloud: a tractable problem in 3D radiation
transport

So far, we have only used 1D RT taken either literally (in d = 1
space) or in the framework of slab geometry (in d = 3) when
translational invariance prevails, i.e. the cloud is horizontally,
if not completely, uniform. At the very least, this crude cloud
model has brought us some physical insights. The resulting
1D RT may even be justifiably applied to the analysis of real-
world clouds as long as they are in a single unbroken opaque
layer, the essence of stratiform (St) cloud decks. However,
we are compelled to address—hopefully by way of analytical
computation—clouds that are at the opposite end of the gamut
in outer geometry: clouds that, like cumulus (Cu), are finite
in all three dimensions. For this class, we propose to use a
spheroid as an archetype.

Other finite shapes have been investigated using both
transport and diffusion theories: parallelepipeds-diffusion
[94], parallelepipeds-transport [95, 96], truncated cylinders
with vertical axis of rotation with diffusion [97], and probably
others. However, in the diffusion framework, such shapes
with sharp edges invariably lead to non-trivial problems
where different eigenfunction expansions must be matched.
Strangely overlooked in the literature, spheroids do not have
this complication.

Davis [98] worked out the problem of diffusive radiation
transport in optically thick non-absorbing spherical clouds
under solar illumination properly distributed over one

hemisphere. Although the incoming solar flux is correctly
modulated by the cosine of the angle between the local out-
going normal and the given direction of the Sun, this spatially
varying flux is converted at the boundary into an isotropic
source. This is in step with the boundary-source model used
in a previous section for the plane-parallel slab. Although not
very realistic for less than asymptotically large optical depths
(thus reducing the thickness of the radiative boundary layer),
it does allow the model to be solved in closed form. In the
following, we outline the problem and compare its solution
in the diffusion approximation with the golden standard of
Monte Carlo (MC) implementation of the corresponding linear
transport problem.

For a general optical medium defined by an open and
convex set M ⊂ R

3, with the closed boundary set ∂M , the
slab-based BC in (37) expressing illumination by a collimated
beam becomes

I (x,Ω) =
{

F0δ(Ω − Ω0), x ∈ ∂MR,

0, x ∈ ∂MT ,
(76)

for all x ∈ ∂M . This set has been partitioned as follows:{
∂MR = {x ∈ ∂M;Ω0 · n(x) � 0},
∂MT = {x ∈ ∂M;Ω0 · n(x) > 0}, (77)

where n(x) is the out-going normal to ∂M at x. For an
isotropic boundary source distributed over ∂MR with the same
overall solar flux intercepted by M , the right-hand side side of
the top line in (76) becomes F0|Ω0 · n(x)|/π .

For convex media, ∂MF (F = R, T ) are two simply-
connected sets. The choice of subscripts adopted here hints
at the fact that radiation escaping M through ∂MF contributes
to reflection if F = R and transmission if F = T . Note that
this partition between reflection and transmission is based on
where the radiation escapes, rather than in what direction it is
heading. This distinction does not arise in slab geometry. In
the present finite 3D geometry, this choice of definition has the
advantage of separating topologically the cloud boundary into
its ‘sunny’ and ‘shady’ sides. In the case of a spherical cloud,
M(rc) = {x ∈ R

3; ‖x‖ < rc}, with Ω0 = +ẑ, we have{
∂MR(rc) = {x ∈ R

3; ‖x‖ = rc, z � 0},
∂MT (rc) = {x ∈ R

3; ‖x‖ = rc, z > 0}.
The natural choice of coordinate system here is7

x = (r cos ϑ, r sin ϑ cos ϕ, r sin ϑ sin ϕ)T.

For the simple diffusion model in a uniform sphere, with no
volume sources or sinks (conservative scattering), the transport
equation is simply −∇2J = 0, where ∇ = (∂r , r∂ϑ , 0)T in this
axi-symmetric situation. The applicable Robin BCs forJ (r, ϑ)

on ∂M(rc) = {x ∈ R
3; ‖x‖ = rc} are

Fin(ϑ) = 1
4 (1 + χ�t∂r)J |r=rc

=
{

F0| cos ϑ |, π/2 � ϑ � π,

0, 0 � ϑ < π/2.

7 Note the curly fonts used here to distinguish spatial from directional
spherical coordinates.
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The original paper [98] gives the derivation of the 0th and
1st coefficients in the natural expansion in (spatial) spherical
harmonics:

J (r, ϑ) =
∑
l�0

rl Pl(ϑ).

Those two are the only ones that matter for the out-going
boundary fluxes

Fout(ϑ) = 1
4 (1 − χ�t∂r)J |r=rc = J (rc, ϑ)/2,

if integrated over the sunny and shady hemispheres. Indeed,
we are interested here in the transmission

T = 1

πr2
c F0

∫ π/2

0
Fout(ϑ) dS(ϑ), (78)

where dS(ϑ) = 2πr2
c sin(ϑ) dϑ and, by conservation, cloud

albedo R = 1 − T . This integral is easily done with spherical
harmonics and leads to the simple result that

R

T
= rc

χ�t
= (2rc)/�t

2χ
, (79)

where the numerator can be interpreted as the scaled optical
diameter of the sphere. Since we have R + T = 1 in this pure
scattering case, we can solve for R and T as needed.

Figure 8 shows validation data for the above diffusion
model obtained by implementing a MC solution of the
corresponding problem in linear transport theory. More
specifically, we solved the steady-state version of (8) in M(rc)

with �0 = 1 and the H–G phase function in (33) for
g = 0 and 0.85 using BCs in (76) for a collimated solar
beam as well as the isotropic boundary source with the same
flux (i.e. modulated by the local cosine of the SZA). We
see that the two types of illumination converge to the same
answer for spheres of large optical thickness. The diffusion-
theoretical prediction for the ordinate, (R/T ) / (2rc/�t), is
1/2χ . This gives 3/4 for χ = 2/3 but, due to our stated
flexibility about χ , can fall in the range 0.70–0.86. The MC
data support this prediction, particularly toward the low end
(high χ ).

The result in (79) is quite remarkable because, going back
to (61)–(62) for the non-absorbing slab model, we find

R

T
= (1 − g)τ

2χ
= H/�t

2χ
, (80)

which has precisely the same interpretation (since H is the
‘diameter’ of the slab).

This leads us to some minor speculation. Let us broaden
the scope to non-absorbing ellipsoidal clouds M(a, b, c) =
{x ∈ R

3; (x/a)2 + (y/b)2 + (z/c)2 < 1} illuminated along
the positive z-axis, but restrict ourselves to oblate cases, i.e.
vertical aspect ratio min{a, b}/c � 1. We already know that
the cases a = b = c = rc and c = H/2 with a = b = ∞ lead
to the same expression for R/T , namely, c/χ�t . Could it be the
same answer for arbitrary a and b? (This is most easily verified
in the case of infinite horizontal cylinders, where b = ∞
and a = c = rc.) In other words, for isolated horizontally
(as well as vertically) finite clouds, R/T depends linearly on

Figure 8. Overall reflection/transmission ratio for conservatively
scattering spherical clouds of varying optical thickness. MC
simulation results for the ratio R/T divided by the scaled optical
diameter of the sphere, τt = 2(1 − g)σrc, are plotted versus τt . The
analytical diffusion model described in the main text predicts a
constant value of 1/2χ . The possible range for this number is
indicated (horizontal dashed lines) and it is validated by the
MC-based computational linear transport, the usual standard of
accuracy, for large τt , as expected. Both collimated and diffuse (but
latitude-dependent) illumination was used and both isotropic (empty
symbols) and H–G (g = 0.85, full symbols) phase functions were
considered. The line for clouds with R = T (1–1) and R = 2T
(2–1) is indicated by the (solid) diagonal lines, and the former gives
the small-τt limit for diffuse illumination scenario. For the small τt

with collimated illumination, a constant ratio is expected; for more
detail; see Dickinson et al [75] recent study in single scattering.

the optical thickness of M but does not seem to depend on
its aspect ratio. If so, we can exploit this result for a new
(inherently 3D) concept in cloud remote sensing, as described
further on (cf section 8.2.1).

4. Spatial and temporal Green functions

We are primarily interested in the relatively small subset of
Green functions for boundary sources and boundary observers.
Recalling that �ρ = (x, y)T, we therefore take the unidirectional
boundary-source function I (t, �ρ, 0,Ω), µ > 0, for the RT
problem to be as in (37) but with F0 = 1 and concentrated in
space and time with factors δ(t) and δ( �ρ). For a normally
incident pulsed laser beam, we furthermore take Ω0 = ẑ

(µ0 = 1). The spatial Green function for plane-parallel media,
often described as the ‘pencil-beam’ problem, has attracted a
lot of attention in RT, starting with Chandrasekhar [10] up to the
present, as well as in neutron transport [99]. It is particularly
challenging whenµ0 < 1 [100], when scattering is anisotropic,
and when H < ∞ [101]. Closed-form expressions for such
transport-theoretical Green functions have been proposed as
benchmarks for numerical 3D transport codes at large.
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For a unitary isotropic point-source at the cloud boundary,
also of interest here, we replace the δ(Ω − Ω0) factor by 1/π .

4.1. The diffusion PDE-based approach to space–time Green
functions

When the space–time Green function of a uniform slab cloud
is targeted, the simplest possible diffusion model—that based
on an isotropic boundary source—is obtained by replacing 4F0

on the right-hand side side of (51) with 4δ(t)δ( �ρ). We note
that, even when the cloud is homogeneous, the Green function
problem is inherently 3D because the source is concentrated at
a single point.

We now take 2D Fourier-in- �ρ-space and Laplace-in-time
transforms of the key diffusion-theoretical quantity J (t, x),
yielding

J̃ (s, �k; z)=
∫ ∞

0
dt

∫∫
R2

exp(−st + i�k · �ρ) J (t, �ρ, z) d �ρ(x, y)

(81)

and similarly for F̃ (s, �k; z) from F (t, x). Note that we can
now consider the Laplace and Fourier conjugates of time
and position in the horizontal plane (s and �k, respectively)
as parameters rather than independent variables, hence the
position of the ‘;’ separator.

The classic diffusion PDE in (29), where there are no
absorption losses, then morphs into a Helmoltz-type ODE in
the remaining spatial variable, z. Equivalently, combination of
Fourier–Laplace transformed versions of (16) and (24) yields

− d2J̃

dz2
+ 3σt[σa + σ (e)

a ]J̃ = 0. (82)

This ODE is subject to boundary conditions(
1 − χ

σt

d

dz

)
J̃

∣∣∣∣
z=0

= 4,

(
1 +

χ

σt

d

dz

)
J̃

∣∣∣∣
z=H

= 0,

(83)

from (44)–(45), after incorporating (24) with qF (t, x) ≡ 0.
We have defined here

σ (e)
a (s, k) = k2/3σt + s/c (84)

as an effective absorption coefficient that combines, as needed,
with the true absorption coefficient in (82). Variation in time as
well as horizontal fluxes indeed act like an absorption process
in the transport of radiation along the vertical axis. So much so
that the expressions in (69)–(70), respectively, for reflectivity
and transitivity can be used here for R̃(s, k) and T̃ (s, k). We
must, however, redefine (1 − �0) as [σa + σ

(e)
a (s, k)]/σ , and

retain σt as (1 − g)σ + σa, with no impact from the pseudo-
absorption; in particular, if σa = 0, we take �0 as unity
whenever it multiplies g.

Can the resulting expressions for R̃(s, k) and T̃ (s, k) be
inverse Fourier–Laplace transformed explicitly? We have not
succeeded ... unless, following Zege et al [102], we enlarge
the domain and modify the Robin BCs in (83) to look like
Dirichlet BCs:

J̃ (−χ/σt) = 4, J̃ (H + χ/σt) = 0, (85)

which gives real meaning to the expression ‘extrapolation
length’ for χ/σt . This approximate radiation diffusion theory
leads to boundary-flux Green function expressions that can
be Taylor-expanded into series of exponential functions with
constant coefficients. An immediate benefit is that these can
be Fourier–Laplace inverse-transformed term-by-term. The
resulting space–time expressions as infinite sums are, however,
slow to converge at large (ct, ρ). Fortunately, this situation
can be reversed by using the Poisson sum-rule [59, 103, and
references therein].

In the end, the space–time Green function is a spatial
Gaussian at any fixed time, and time-dependence is a sum
of exponential terms. Having explicit formulae for the Green
functions enables the determination of far-field behavior for
the marginal (space or time) Green functions, which turns out
to be exponential on both accounts. The spatial Green function
is thus ∼ exp(−ρ/ρ�) as ρ → ∞ and the characteristic
horizontal transport distance is

ρ� = H/πR(τt), (86)

where τt = (1 − g)τ and R(τt) is the two-stream estimate
of cloud albedo in (61). The time-domain Green function is
∼ exp(−ct/ct�) as ct → ∞, where the e-folding path length is

ct� = 3

π2
× H × τt

R(τt)2
. (87)

Coming from a model with strict similarity, i.e. solutions
depending only on the combination of cloud properties in
(1 − g)τ , we can verify that (ρ�)2/ct� = H/3τt = D/c

from (26).
Returning to the more accurate Robin BCs in (83), the

lack of closed-form inverse transforms is not an impediment;
quite the contrary, if the goal is to obtain expressions for
the spatial or temporal moments of the Green function.
The formal definition of the spatial moment of prime
interest is

〈ρ2〉F = 1

F

∫ ∞

0
dt

∫∫
R2

ρ2F(t, �ρ) d �ρ(x, y), (88)

for F = R, T , where

F =
∫ ∞

0
dt

∫∫
R2

F(t, �ρ) d �ρ(x, y). (89)

Temporal moments are defined similarly as

〈tq〉F = 1

F

∫ ∞

0
tqdt

∫∫
R2

F(t, �ρ) d �ρ(x, y) (90)

with q = 1, 2 or more, again for F = R, T .
Characteristic function theory from probability (see, e.g.

Feller’s treatise [104]) tells us how to obtain spatial or temporal
moments from the successive derivatives of R̃(s, k) or T̃ (s, k)

with respect to s or k at the origin:

〈ρ2〉F = −2

F

∂2F̃

∂k2

∣∣∣∣∣
s=0,k=0

(91)
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for the horizontal transport away from the point-source, and

〈tq〉F = 1

F

(
− ∂

∂s

)q

F̃

∣∣∣∣
s=0,k=0

(92)

for time. These last quantities describe how the incoming short
pulse is stretched in the responses of the scattering medium;
in particular, we can determine how the variance of the transit
time, 〈t2〉F − 〈t〉2

F , varies with cloud parameters.
We can apply the above recipes for estimating spatial and

temporal moments to the fluxes obtained in the diffusion limit,
namely, (69)–(70). In the absence of true absorption, we only
need to use

L
(e)
d (s, k) = 1/

√
3σtσ

(e)
a (s, k) (93)

when it appears in X and Y , in ratio with the extrapolation
length �t and the slab thickness H , respectively, in the ancillary
definitions (71)–(72).

Following Davis et al [105], we start with (69). This
basic diffusion model predicts the following dependences
of reflected Green function moments on the properties of
conservatively scattering clouds:

〈ρ2〉R = 8χ

3

1

τt
× H 2 × [1 + C

(2)
R,ρ(τt/2χ)], (94)

〈ct〉R = 2χ × H × [1 + C
(1)
R,ct (τt/2χ)], (95)

〈(ct)2〉R = 4χ

5
τt × H 2 × [1 + C

(2)
R,ct (τt/2χ)], (96)

where we have highlighted the asymptotic (large τt) trends.
The pre-asymptotic correction terms are given by

C
(2)
R,ρ(Z) = C

(1)
R,ct (Z) = Z + 3/2

2Z(Z + 1)
,

C
(2)
R,ct (Z) = 8Z3 + 41Z2/2 + 75Z/4 + 1/8

2Z2(Z + 1)2
,

where, as in (79), we define

Z = R/T = τt/2χ. (97)

Time is recast here as the effective path length ct that the light
has accumulated by random scattering in the medium, from
emission to escape.

Similarly, following Davis and Marshak [106], we apply
(91) and (92) to (70) with all ancillary definitions, and obtain

〈ρ2〉T = 2
3 × H 2 × [1 + C

(2)
T ,ρ(τt/2χ)], (98)

〈ct〉T = 1
2 τt × H × [1 + C

(1)
T ,ct (τt/2χ)], (99)

〈(ct)2〉T = 7
20 τ 2

t × H 2 × [1 + C
(2)
T ,ct (τt/2χ)], (100)

where

C
(2)
T ,ρ(Z) = C

(1)
T ,ct (Z) = 4Z + 3

2Z(Z + 1)
,

C
(2)
T ,ct (Z) = 56Z3 + (166Z2 + 15(10Z + 3))

14Z2(Z + 1)2
.

A striking difference between the above expressions for
T -moments and their counterparts for R-moments in (94)–(96)

Figure 9. Cloud responses to a pulsed isotropic point-source in
reflection. Diffusion predictions from (95)–(94), with correction
terms, for moments and (61) for R, via T = 1 − R, are in solid
lines; MC validation data are plotted with symbols. The best overall
fit was obtained for χ = 1/

√
3 ≈ 0.58. Adapted from [105].

is that the extrapolation length parameter χ has disappeared
from the dominant terms. Recall that χ is a weak link in
diffusion theory used to best capture radiative boundary-layer
effects in the diffusion solution, by theoretical or numerical
comparison with the full RT solution. There are obviously
radiative boundary layers on both sides of the cloud where the
transport regime goes from diffusing to streaming. However,
the near-source/reflective side of an optically thick cloud is
dominated by radiation that has suffered only a few scatterings
(as little as a single one). So it is not surprising to see the
signature parameter χ , used for boundary-layer control, play
an important role in reflected light characteristics, but not in
those of transmitted light.

Figures 9 and 10 illustrate the spatial and temporal
moments of the reflected and transmitted Green functions
respectively, for the simplest (isotropic boundary point-source)
diffusion problem. Explicit expressions are in (94)–(96) for
R-moments and (98)–(100) for T -moments; we also plot the
normalized flux T = 1 − R from (62). All the moments
are normalized by cloud thickness H taken to the appropriate
power; then the square-root of the second-order moments is
computed, thus producing root-mean-square (RMS) statistics.
These non-dimensionalized quantities are plotted against
scaled optical depth (1 − g)τ , which is characteristic of
diffusion theory. Spatial and temporal moments estimated
in the course of MC simulations of the corresponding RT
problems, assuming both isotropic and g = 0.85 Henyey–
Greenstein (33) phase functions, are also plotted. The MC
runs provide validation data for the diffusion model since they
result from a higher-level model.

The isotropic boundary point-source model is not very
realistic for representing either localized laser beams (typically
at normal incidence) or the uniform solar beam (typically
at some oblique incidence). Nor is the assumption of a
homogeneous cloud in view of the well-known tendency of
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Figure 10. Cloud responses to a pulsed isotropic point-source in
transmission. Diffusion predictions from (98)–(100), with
correction terms, for moments and (62) for T are in solid lines; MC
validation data are plotted with symbols (two values of χ used to
reproduce the MC benchmarks). Adapted from [106].

stratiform clouds to develop robust internal gradients in LWC,
hence in extinction σ from (67). Moreover, this cloud-scale
stratification is overlaid in most clouds with significant random
3D fluctuations due to their inherent turbulence.

All of these limitations of the above transport model can
be removed without leaving the framework of diffusion theory,
and still leading to closed-form expressions at least for the
spatial and temporal moments. We highlight one particularly
simple approach for the small-scale random fluctuations in
section 5.1.1. For further improvements, the interested reader
is referred to the recent paper by Davis [107] for reflected light.
The same enhancements are extended from reflected light to
transmitted light by Davis et al [108]. Expressions therein are
useful, but not simple.

4.2. New opportunities in cloud remote sensing

Apart from the high accuracy of the diffusion-based predictions
for τt = (1 − g)τ � 1, the remarkable fact about figures 9 and
10 is that, in both cases, different space and time moments scale
differently. This is very good news for cloud remote sensing
using somehow observed Green functions, as discussed further
on; indeed, given observed values for any two moments, one
can estimate the two cloud properties H and τ , recalling that
g hardly varies in nature (at least for liquid clouds [56]). The
above-mentioned modeling refinements for laser-beam source
representation as well as internal stratification and random
fluctuations of extinction do not change these qualitative
statements based on the asymptotic behavior of (94)–(100)
visible in the associated figures 9–10.

There are many other ways of obtaining cloud optical
depth τ that are already operational. For instance, in section 3.2

the level of solar background noise in lidar systems was
exploited, just by treating the receiver as a basic narrow FOV
radiometer. In essence, this technique consists in solving
(61) for τ given R or (62) given T . We therefore extend
the list of possible ‘observables’ by including the spatially
and temporally integrated fluxes in (89), also plotted in the
figures. In contrast, there are very few existing ways of
obtaining physical cloud thickness H . The best is probably
to use millimeter-wave cloud radar (MMCR), which is now
available from many ground-based stations world-wide as well
as from space (presently, only NASA’s CloudSat mission, but
more will come). This is the advanced active single-scattering
technology for clouds that are too opaque in the visible/near-IR
(VNIR) for thin-cloud/aerosol penetrating lidar; moreover, the
backscattering follows Rayleigh’s law since droplets are � λ.
As powerful as MMCR has proven, it does not always work as
originally planned; in particular, insects and even a light drizzle
can saturate the dynamic range of an MMCR [109]. Even when
it does work, it is not straightforward to translate the MMCR
reflectivity, basically the droplet density ×r6 from (2), into
VNIR-TIR cloud information that matters for the climate.

We also note that, for all the observational possibilities in
(88)–(90), there are very different calibration requirements.
Indeed, the normalization of F by F0 in, e.g. (52)–(53),
reminds us that these responses for steady and uniform
illumination can be measured only if the radiometers have
absolute calibration, which is notoriously difficult to establish
and maintain with high precision. In contrast, the ratios in the
moments per se (88) and (90) make their observation immune
to unknown multiplicative constants in the fluxes, i.e. absolute
calibration error.

An interesting difference between the plots for reflected
light (figure 9) and its counterpart for transmitted light
(figure 10) is that the mean and RMS values for path ct are
closely related in T but diverge in R as (1 − g)τ increases
without bound. This is much better news for the observation
of clouds in reflection than in transmission. It indeed turns out
that

√
〈t2〉F /〈t〉F is almost constant when F = T , but when

F = R it increases with τ . So, with access only to time-domain
observations of reflected light, one can in principle infer both
τ and H , still without any need for calibration.

A straightforward instrumental implementation of space–
time RT Green function observation, potentially leading
to Green function moment estimation, uses pulsed lasers
[110, 111]. In this case, the receiver is very near the
transmitter, at any rate, on the same side of the cloud; so
the relevant moments are the 〈· · ·〉R’s. Whether or not these
moments are estimated explicitly with the field data, the above
cloud information content analysis proves correct.

Reliance on the expensive technology of pulsed lasers is
not strictly necessary to access time-domain observables such
as 〈tq〉F . We will show in section 8 how in fact both spatial and
temporal information can be determined even using a steady
and uniform source such as the Sun. In this case, reflected
quantities are obtained from airborne and space-based sensors,
and transmitted ones from ground-based sensors.
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4.3. The random-walk scaling approach to space–time Green
functions

We have so far used a PDE-based theory of radiation diffusion
to compute multiple-scattering Green functions, and we have
systematically used MC simulation to validate numerically that
RT approximation leading to convenient closed-form results.
It is informative to go to the other extreme of this hierarchy in
Green function models and perform a highly simplified version
of MC simulation analytically, namely, estimate statistical
properties of random (a.k.a. drunkard’s) walks. This approach
reveals the physical essence of the problem of transport
in dense clouds. Specifically, one can derive the scaling
exponents of τt = (1 − g)τ in all the dominant terms of the
Green function moments, cf (94)–(96) and figure 9 for reflected
light, (98)–(100) and figure 10 for transmitted light. The
same exponents appear in all other spatial or temporal moment
estimations based on more sophisticated representations of
the cloudy medium or the source term [107, 108]; in other
words, the refinements affect only scaling prefactors and pre-
asymptotic corrections.

We note first that the key cloud parameter in diffusion
theory, τt , is the ratio of the only two scales that matter in
random walks:

• H , the outer scale (size of the domain bounding the
stochastic process);

• �t , the inner scale (MFP for effectively isotropic
scattering).

The latter defines diffusivity, namely, D = c�t/d in d spatial
dimensions.

4.3.1. Caveat about photons as ‘particles’ of light. The term
‘photon’ was coined by Gilbert Lewis in 1926 to describe the
quantum of the electromagnetic field, of which light is a prime
example. Even if second quantification assigns energy hν,
momentum h/λ and spin ±h to photons, it is fundamentally
incorrect to think of them as either classic or quantic particles
traveling through space–time at velocity c. For instance, by
any definition, it is not the same photon (EM field excitation)
that is incident and re-emitted by a scattering entity. Photons
can populate energy levels in, e.g. thermal sources and laser
cavities; they can also be detected using materials such
as silicon endowed with photo-electronic responsivity. In
between, it is light—not photons—that propagates in optical
media according to the laws of RT theory, which is a non-
trivial construct from statistical optics in a classic framework
[49]. The radiance field predicted by the RTE, and associated
boundary conditions, is only a probability of detecting a photon
(per photon emitted at the source) with a roaming virtual
instrument.

In MC computation, it is very tempting to talk about
the ‘photons’ launched in a simulation. This should be
avoided, proper terminology is ‘histories’ or ‘trajectories’ or
‘realizations’ or even ‘Monte Carlo particles.’ Recall that
MC is only a random quadrature approach for estimating
functionals, integrals over high-dimensional radiance fields.
The random-walk theory presented here is basically a poor
person’s MC, with only some basic results from probability

theory to work with. So, although strongly reminiscent of
wandering particles, we are dealing with light intensities, to
be interpreted strictly as probability densities for detection
events. Only at that point can one talk about photons and,
more correctly, photo-electrons.

4.3.2. Elements of Brownian motion theory. In boundary-
free homogeneous 3D space, an isotropic source at r = 0 emits
a diffusing ‘wavefront’ of particles propagating at a decreasing
‘velocity’ such that the mean distance from the origin, ≈

√
〈r2〉,

grows only as
√

Dt . This is a classic reading of the famous
law of diffusion

〈r2〉 = 6Dt, (101)

in unbounded 3D space, which results directly from the well-
known Green function for diffusion in three spatial dimensions:
n(t, r) = e−r2/4Dt/(4πDt)3/2, itself the solution of ∂tn = ∇2n

for t > 0 when n(0, r) = δ(r).
In the statistical physics of Brownian motion, a lesser

known but extremely useful result is the ‘law of first returns’
[112]. Focusing, for simplicity, on 1D random walks (where
D = c�t) along the z-axis, we seek the PDF of t > 0,
the random epoch at which the coordinate of the Brownian
particle (that left z = 0 at t = 0) first changes sign. It can be
shown [113, 104] that

Pr{t, dt} = c√
π�t

(
�t

ct

)3/2

e−�t/2ctdt ∼ dt

t3/2
, (102)

if we acknowledge, then ignore, the exponential cut-off at
early times. This is an interesting PDF associated with the
gambler’s ruin problem: How long does it take a person who
comes to the roulette table with $1, and always bets ‘red,’
$1 at a time, to walk away with nothing? There is actually
no mean for this duration—it is divergent—and that may go
a long way in explaining why gambling is addictive, and
accordingly why casinos are open 24/7. Indeed, before losing
everything in time with probability one (even the initial $1) to
this casino with an infinite bank, gains can be considerable—
and last a correspondingly long time—for a significant number
of players.

The corresponding RT problem is that of reflection from
a semi-infinite (H → ∞) non-absorbing medium, where
〈ct〉R is indeed infinite; this follows from (95) since the ratio
〈ct〉R/H becomes insensitive to scaled optical thickness τt .
Alternatively, one can consider the ratio 〈ct〉R/�t that will
increase as τt = H/�t when the transport MFP �t is held
constant. Higher-order moments follow suite at even faster
rates. Fractional-order moments of order q < 1/2 are,
however, finite.

4.3.3. Transmitted light. Now r2 = x2 + y2 + z2 and, by
symmetry, all three components are equal in magnitude on
average, at least in unbounded diffusion. Therefore, since
z = H whenever a transmission event occurs, ρ2 = x2 + y2 ≈
(2/3)H 2. This concurs with the expression in (98) for 〈ρ2〉T : it
is asymptotically invariant with respect to τt , and the prefactor
is correctly predicted.
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Furthermore, when the bulk of the diffusing wavefront
reaches the opposite boundary, we will be detecting the
transmitted Green function at full strength. We can estimate
this epoch by setting 〈r2〉 ≈ (2/3)H 2 in (101), hence
t ≈ (2/3)H 2/6D = H 2/3c�t = (H/c) × τt/3. In other
words, reinterpreting t as a random variable, we anticipate
that 〈ct〉T /H ≈ τt/3. This confirms the expectation in (99)
based on ‘exact’ (PDE-based) diffusion theory, as illustrated
in figure 10, for the scaling exponent if not the prefactor.

There is no simple argument for the scaling of the
2nd-order moment in time, also plotted in figure 10. The fact
that it goes as 〈ct〉2

T tells us that the distribution of arrival times
at the boundary opposite the source of diffusing particles is
relatively narrow.

It is interesting that we can estimate at least the scaling of
Green function moments in transmission without knowledge
of the overall probability of transmission T . This is the
theoretical equivalent of the above-stated instrumental fact that
we do not need calibrated radiometry to derive moment-based
observables of cloud Green functions. To derive the scaling
of T with τt calls for the law of first returns in (102). Real
clouds have finite physical and optical thicknesses, and real
casinos have finite banks. We can approximate the probability
of transmission—the ‘always red’ gambler breaks the casino’s
bank—by truncating the PDF in (102) at the characteristic
transit time 〈t〉T ∼ H 2/c�t it takes for light from the pulse
to be transmitted. This leads to

T ≈ Pr{t > 〈t〉T } =
∫ ∞

〈t〉T
Pr{t, dt} ∼ �t/H, (103)

i.e. the asymptotic behavior T (τt) ∼ 1/τt in (62), clearly
visible in the corresponding curve in figure 10.

4.3.4. Reflected light. Temporal/path moments for reflected
light can also be estimated for a finite diffusion domain,
namely, 0 < z < H , by defining a truncated (and, in principle,
renormalized) version of the PDF in (102) for the first-return
process. Allowing time for the particle to return to z = 0 after
wandering deep into the medium (i.e. almost being transmitted
at z = H ), we compute specifically

Iq =
∫ 2〈t〉T

0
tq Pr{t, dt}, hence

〈tq〉R ≈ Iq

I0
∼

(
�t

c

)1/2 (
H

c�t

)q−1/2

, (104)

where we have neglected the difference between I0 and unity,
namely, T in (103). Recalling once more that H/�t = τt , this
leads to 〈(ct)q〉1/q

R ∼ H × (τt)
1−1/q , as was found in the limit

τt → ∞ in (95)–(96).
As previously noticed, it is remarkable that the moments

〈(ct)q〉R all scale differently with τt whereas we fully expect
that 〈(ct)q〉T ∼ 〈ct〉qT , for q � 2. From the vantage of this
random-walk approach to diffusion theory, we can trace this
property to the mixture, made clear in (104), of short and long
paths ct in reflected light. In RT language, this translates
to reflected light being a relatively balanced mixture of light
scattered both few and many times.

As we did for the spatial Green function in transmission,
we can roughly estimate the RMS value of ρ for reflection
from (101), with D ∼ c�t and (104) for q = 1. We obtain
〈ρ2〉R ∼ D〈ct〉R ∼ H�t . In other words, the RMS ρ for
reflected light goes as the harmonic mean of �t and H , the
inner and outer scales of the diffusion problem at hand, which
is just another reading of the dominant term in (94).

5. Realistic (3D) versus operational (1D) cloud RT

The atmospheric radiation communities engaged in both cloud
remote sensing and energy cycling by clouds are, to this day,
heavily invested in the plane-parallel slab representation of
clouds, at least in operational settings where efficiency and/or
simplicity are desirable in order to expedite frequent routine
computations. This is irrespective of the pixel scale, which
range from approximately tens of meters to approximately tens
of kilometers, or of the grid scale of the dynamical model,
which also range from approximately tens of meters in Large-
Eddy Simulation (LES) models to ∼100 km (and decreasing)
in GCMs. So, in spite of decades of research into 3D
RT effects, 1D RT models are still an unavoidable point of
comparison.

Scale-by-scale variability analysis is key to 3D RT because
it can be used to determine what processes need to be
considered. So is the question of resolved versus unresolved
spatial variability, be it in observations or in computations.
Indeed the latter distinction, as artificial as it is, determines
what kind of 3D RT solution should be explored. In the
following, we examine both situations and, for each one,
discuss illustrative methods that address the fundamental
issues at hand.

5.1. Dealing with unresolved random fluctuations

If there are significant spatial fluctuations of optical properties
at scales that are sub-pixel or sub-gridscale, then it is important
to assess their effect on the RT. This assessment is necessarily
probabilistic since, by definition, detailed structure is not
given; a (usually small) number of statistical properties are
of course given. Accordingly, only domain-average radiative
properties are required of the RT model.

There are three broad classes of solution to this problem.
On the one hand, one can figure out a way of modifying the
given (typically, mean) optical properties in such a way that
the new values can be used in a standard 1D RT model and yet
deliver an accurate answer for the domain-average properties
of interest. This is the ‘effective medium’ or ‘homogenization’
approach. On the other hand, one can maybe derive a mean-
field theory for the RT at the scale of the domain and this may
lead to new transport equations calling, in general, for new
solution techniques. Between these two extremes, there is
the so-called independent pixel/column approximation where
multiple 1D RT computations are performed and their outcome
is averaged over the variability of the input parameters;
typically, cloud optical depth is varied.

We now illustrate each of these three approaches with two
or three examples each, one more detailed than the other(s);
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we also refer the interested reader to a more extensive survey
by Barker and Davis [114].

5.1.1. Homogenization. Computationally speaking, the best
way of accounting for 3D RT is to reduce it to a single 1D
RT problem. That is the lofty goal of homogenization (a.k.a.
effective medium) theory. As a first example of this ideal
approach to the capture of unresolved spatial variability effects
in a standard (typically, 1D) RT model, we mention Cahalan’s
[115] ‘effective thickness approximation’ (ETA). Therein a
single 1D RT computation for cloud reflectivity can closely
follow the prediction for the domain average of a detailed
independent pixel approximation (see section 5.1.2 below)
estimate for the bounded cascade model (see section 5.2.1
below); that stochastic model for horizontal cloud variability
has a realistic lognormal-like PDF. The recipe is simple:
replace the spatial mean optical depth τ by ητ , where η is given
by exp(log τ)/τ , which is <1. This is a direct consequence
of Jensen’s inequality [116] in probability theory concerning
averages of functions with definite convexity (in this case, the
exponential). The η factor can be expressed approximately
but conveniently with the parameters of the bounded cascade
model. Thus recentered around the log-mode of the PDF,
the variance has a minimal effect on the average over R(τ),
which is highly nonlinear of the range of interest in the
random variable τ . The ETA was soon adopted by some GCM
modelers [117], and this helped them reconcile the prognostic
cloud optical thickness from the hydrology cycle with what
was needed to produce a realistic albedo in the stratocumulus
regions.

As a second example, we describe the rescaling solution
elaborated by Cairns et al in the years leading up to their
2000 paper [118]. Cairns’ interesting effective medium theory
draws on statistical physics and renormalization. It leads to

σ ′ = (1 − ε)σ ,

1 − � ′
0 =

[
1 − �0

(
ε

1 − ε

)]
(1 − �0),

1 − � ′
0g

′ =
[

1 − �0

(
ε

1 − ε

)]
(1 − �0g).

(105)

The new parameter for the unresolved variability is ε and σ

is the average extinction over the presumably large region of
interest. We see that 1/(1 + �0) � 1/2 is a strict upper limit
for ε; it is probably best to not approach this limit too closely
in practice, especially not in diffusion modeling, because the
rescaled g approaches unity (hence no actual scattering out of
the incident beam). The δ-rescaling in (31), which improves
the scattering phase function model in diffusion theory, leaves
the product (1 − �0g)σ invariant; here it decreases both
through σ and through 1 − �0g as ε increases (since g′ > g).
For diffusion models with strict similarity, i.e. dependent only
on σt = (1 − �0g)σ , we have

σ ′
t ≈ (1 − 2ε)σ t (106)

when scattering is conservative or almost (�0 ≈ 1). So the
prediction is that the small-scale random internal variability

of clouds that Cairns and co-authors renormalized away have
the net effect of reducing the (transport) extinction, hence
the associated optical depth. This will in turn increase cloud
transmittance and decrease reflectance.

We will see that enhanced transmission and reduced
reflection by clouds are robust predictions of all 3D RT models
under the assumption of a fixed mean optical depth. In this
case, we have a fixed volume integral, hence mean value, of σ .

How does one obtain ε? Rossow et al [119]
took an empirical approach using the database of the
International Satellite Cloud Climatology Project (ISCCP,
http://isccp.giss.nasa.gov) [120, and references therein] to
examine the statistical relationships between inferred cloud
optical depths at the small scale of satellite pixels and the
radiances at larger scales typical of GCMs.

However, ε can also be computed from first principles.
Recalling that overscores denote averages over the spatial
variability, Cairns et al show specifically that the ensemble-
average effects moderate-amplitude fluctuations on the 3D
RTE are captured with

ε = a −
√

a2 − v2, (107)

where

v =
√

σ 2

σ 2 − 1 and a = 1

2

(
1 +

1

σ lc

)
. (108)

Parameter v is the standard-deviation-to-mean ratio, itself
expressed with the RMS-to-mean ratio, for σ and we denote
here the characteristic correlation scale of the spatial variability
by lc. We see that

• for small-scale fluctuations (i.e. when lc � trans-
port MFP ≈1/σ ), we anticipate little effect since
ε ≈ (v/a)2/2 ≪ 1 (irrespective of v) as a becomes very
large;

• for fluctuations at larger scales (i.e. when σ lc � 1), we
can have a strong impact (ε � 1/2) although this scenario
clearly stretches the validity of the model, in particular,
amplitude is then limited to cases where v2 � a − 1/4,
hence σ 2/σ 2 � 5/4 + 1/σ lc;

• for fluctuations at the largest scales (σ lc � 1, hence
a ≈ 1/2 and v � 1/2), one should average over
macroscale responses rather than try to find a single
effective medium to account for micro-scale variability
effects.

Figure 11 illustrates this analysis of ε. In the last
(‘slow’) variability regime, the large-scale averaging of
radiative responses can be computed locally using a strong
uniformity assumption, which is the essence of the independent
pixel/column approximation described next in a special (but
representative) case.

The present authors come to the same scale-based
classification of variability effects in RT from the standpoint
of steady-state 3D diffusion theory [121]. They arrive
at essentially the same scale-by-scale breakdown of spatial
variability impacts using a the first-principles analysis of the
propagation process [54], the only difference being that the
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Figure 11. Cairns’ scaling factor ε used in (106). Parameter ε is

plotted as a function of σ 2
1/2

/σ and σ lc using (107)–(108). Values
up to ∼1/3 can be used with some confidence; when �0 = 1, this
upper limit leads to division of 1 − g at most by 2. Therefore, at
most moderate 1-point variability ratio (RMS/mean for σ ) can be
considered. It can be only slightly more than unity, unless the
correlations are very short range vis-à-vis the MFP defined here as
1/σ (even though this is known to be an underestimation [54]).

transport MFP used in the above arguments is replaced by the
usual MFP describing the mean distance between successive
scatterings or, e.g. an emission or an absorption. In the same
paper Davis and Marshak show, incidentally, that the actual
MFP is 1/σ in a broad class of variable media with long-range
correlations, including clouds. Moreover, that estimate always
exceeds 1/σ (they are equal only when σ is uniform).

5.1.2. Independent pixel/column approximation (IPA/ICA).
From the standpoint of computational expediency, the next best
thing to homogenization, leading to a single 1D RT problem to
solve, is the IPA/ICA where a finite number of such problems
are solved. Alternatively, the closed-form solution of a 1D
RT problem, such as obtained in section 3.1, may be averaged
analytically over an explicitly assumed PDF for the variability
of an optical property, typically, cloud optical depth. In this
case, we do not leave the realm of closed-form expressions,
with the obvious computational efficiency that ensues. We
demonstrate with two IPA/ICA computations.

First, we invoke the simplest possible model for spatial
variability of clouds, which is certainly the linear mixing model
based on ‘cloud fraction’ Ac (between 0 and 1). We will see it
again in sections 7.3 and 8.1.1. As easy as it is to conceptualize,
defining and measuring Ac empirically is not straightforward,
in particular, because it depends on what type of instrument
is used and the resolution within a type [122]. At any rate,
it is the first and still foremost application of the IPA/ICA
concept, predating by far that terminology and the acronyms
(introduced in the early 1990s [123, 124]). Take, for instance,
scene albedo under a given solar illumination. The clouds are
assumed plane-parallel and give R(µ0; τc) while the clear sky

gives R(µ0; τa) where the subscript ‘a’ pertains to the aerosol
load. In combination, we get

R(µ0; τa, τc, Ac) = Ac × R(µ0; τc) + (1 − Ac) × R(µ0; τa).

(109)

Simple enough! Since R(·) is a concave function
(∂2

τ R(µ0; τ) < 0), R will be smaller than R(µ0; τ), where
τ = Acτc + (1 −Ac)τa. This inequality is in fact the definition
of a concave function, and the associated bias between R(τ)

and R(τ) did not go unnoticed by early developers of RT
parametrizations for GCMs [125, 126].

Whether for the whole atmosphere or a single layer, we
expect optical depth τ to vary continuously rather than in the
above binary fashion. In the gamma-weighted IPA/ICA [127],
one assumes that the 1-point statistics of τ follow

Pa(τ) = 1

(a)

(a

τ

)a

τ a−1e−aτ/τ , (110)

where

a = τ 2

Var(τ )
= 1

τ 2/τ 2 − 1
(111)

is the new variability parameter. This particular choice of
variability model follows naturally from the ease of integrating
rational functions over arbitrary combinations of power laws
and exponentials, resulting at most in exponential integral
functions and/or incomplete gamma functions; possibly
infinite series thereof that are easily summed numerically to
a pre-specified accuracy. The above choice of PDF for τ is
also justified on the basis of fine-scale satellite observations of
many different kinds of cloud fields [128].

To illustrate, we plot

T a(τ t) =
∫ ∞

0

1

1 + τt/2χ
Pa(τt) dτt = ξeξ Ea(ξ)|ξ=2χa/τ t

(112)

in figure 12(a). Although in a different notations, Oreopoulos
and Barker [129] did the same computation. Here, Ea(ξ) is
the exponential integral of any real order a > 0, and we
note that ξ = a/Z from (97). We note in figure 12(a) a
systematic positive bias of T a(τ t) with respect to T ∞(τ t) =
1/(1 + τ t/2χ). We retrieve the well-known result in 3D
RT: structured clouds transmit more (reflect less) than their
homogeneous counterparts with the same mean τ . This is
an immediate consequence of Jensen’s inequality [116] for a
convex function such as T (τt).

As another illustration, we plot

〈ct〉T /H = T × 〈ct〉T
T a × H

= χ

2
[1 + a + ξ + (2 − ξ)/T a(ξ)]|ξ=2χa/τ t (113)

in figure 12(b). Note how we have properly weighted the
path moment for transmitted light 〈ct〉T from (99), and then
averaged over the gamma-PDF for τ in (110), and finally
normalized the result by T a in (112). As it turns out, the
whole variation of flux-weighted mean path, T × 〈ct〉T =
χ(τ 2

t +6χτt +6χ2)/(τt +2χ)2, is between χ � 1 and 3χ/2 ≈ 1.
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Figure 12. Transmittance and associated mean path for a gamma-weighted diffusion model. (a) The expression in (112) is plotted versus
τ t for selected values of a in log-log axes; we note the increasing transmission as the unresolved variability increases (a decreases) at fixed
τ t . (b) Mean path length, in units of H , from (113) versus τ t for the same values of a as in panel (a); we note that paths decrease on average
as variability increases (a decreases) at fixed τ t . See text for more explanation.

So the systematic trend toward shorter paths due to spatial
variability is traceable to the normalization by T a . Although
one should also bring reflected light into the balance, shorter
paths translate to systematically less absorption in variable
clouds. In the limit of asymptotically large τt , (112) and (113)
yield, respectively,

T a ∝ τ
− min{a,1}
t and 〈ct〉T /H ∝ τ

min{a,1}
t . (114)

We resume our discussion of this simple variability model
in section 7.1 where we find its prime application to GCM
parametrization improvement.

5.1.3. Mean-field theory. Mean-field theory departs more
radically from 1D RT than both homogenization, which
attempts to reduce the 3D RT problem to a single 1D one,
and the IPA, which attempts to reduce the 3D RT problem to a
larger number of 1D ones. In this framework, which has a long
and venerable history, we end up with new transport equations
to solve. A classic example is the so-called ‘stochastic’ RT
model, which was first introduced into atmospheric RT by
Avaste and Vainikko in 1974 [130]. It recasts the highly 3D
problem of solar RT in broken cloud layers as two coupled
integro-differential equations, one for radiance in the clouds,
the other for radiance in the clear regions. It predicts ensemble-
average radiances and fluxes, which are generally used to
represent instantaneous large-scale spatial averages. The
coupling assumes a Poissonian spatial distribution of clouds
in space (i.e. no correlations beyond the residual characteristic
inter-cloud distance). Along beams cast through this randomly
structured medium, clear-to-cloud transitions (and vice-versa)
are Markovian. This leads to the mathematically simplest
possible coupling between the two transport equations: linear
crossing terms where the two new parameters are mean cloud
fraction Ac and mean cloud aspect ratio γ = L/H (where L

is the mean horizontal cloud size).

The stochastic RT model continues to be refined [131, 132,
among others], validated [133–135], and applied [136, 137,
among others] to this day; see also section 7.3 below, especially
figure 29. Interestingly, it was developed independently in
the neutron transport community [138, 139] where, again, it
remains very popular. Indeed, the question of small-scale
spatial variability, unresolved in large-scale models for nuclear
reactors, is taken very seriously for good reasons. Pomraning,
one of its originators in neutronics, and coworkers later on
re-introduced the stochastic RT model into climate science
[140]. It has two well-known limits. When γ → ∞, clouds
are horizontally very extended and there is little radiative
coupling with the clear regions, so the two-state IPA in (109)
becomes accurate and, accordingly, the two RTEs decouple.
In the opposite limit, γ → 0, ‘clouds’ become so small
that between two elementary events (e.g. scatterings) at finite
distance the light samples many times both cloudy and clear
air, so only the mean extinction (hence mean optical depth)
matters, accordingly, the two RTEs degenerate to a single one.
This latter case is known as the ‘atomistic mix’ limit. So, in
a specific sense, the stochastic RT model goes continuously
from the 1D RT case to the two-state IPA as γ increases from
0 to ∞.

Another interesting and under-appreciated contribution to
the topic was by Stephens [141]. Targeting the spatial domain-
average fluxes that matter in GCMs, he revisited the derivation
of the two-stream 1D RT model. In this case, he had in hand
a parametrized expression (based on numerical simulations
in [142]) for the systematic directional effect of the radiative
‘channeling’ described further on (section 6.1). This process
introduced a new optical coefficient (in the usual units of km−1)
that, like Cairns’ ε, can be obtained in principle either from
theory or from observations.

To illustrate mean-field theory within our own work,
we revisit the time-dependent random-walk model used in
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Figure 13. Schematic of the anomalous diffusion and transport
models for domain-average solar RT in columns with spatially
complex cloudiness. Sunlight gets trapped in clouds where the
random steps in multiple-scattering trajectories are small. However,
there are also relatively frequent large jumps between the clouds
and/or the surface. Also note the large fraction of light bounced
back to space. In the anomalous diffusion model [62], the random
steps are implicitly drawn from symmetric Lévy-stable
distributions [143] with indices 1 < α � 2 (α = 2 reverts to the
classic Gaussian case, and ‘normal’ diffusion ensues); computations
are analytic. In the anomalous transport model [63], the random
steps s are drawn from the gamma-weighted mean direct
transmission law Pr{s > S} = (1 + σS/b)−b, where 1 < b � ∞
(b = ∞ reverts to the classic exponential case, and ‘normal’
transport ensues); computations are numerical, using a modified 1D
MC code. The asymptotic laws for the responses in reflection and
transmission are as in the diffusion model, with α = min{2, b}, by
Lévy’s generalized central limit theorem [143, 144].

section 4.3. To this effect, we consider the present authors’
theory of anomalous diffusion of solar radiation. In their
original paper, Davis and Marshak [62] generalized the
random-walk model to situations where steps are usually
small (inside clouds) but not infrequently very large (between
clouds). See schematic in figure 13.

Davis and Marshak [62] assumed PDFs for step size s with
power-law tails, ∼1/s1+b, such that all moments of order q > b

are divergent. Yet it seems natural to require that the MFP
(average value of s) be finite, hence we require b > 1. There
are indeed theoretical reasons [54] stated in section 2.3 that the
mean direct transmission law, hence free-path distribution, is
sub-exponential. Moreover, there is empirical evidence [128]
that the variability of extinction averaged over a range of
scales is gamma-like; this in turn leads to power-law mean
transmission [129].

Recall from section 2.4.2 that the transport MFP �t =
〈s〉/(1 − g) can be introduced using random-walk language,
i.e. without reliance on (standard) diffusion theory, as the
effective MFP for an isotropic (conservative) scattering. So
we continue to use it here and address finite cloudy media with
slab geometry (thickness H ). We showed [62]

(i) that transmittance Tα scales as τ
−α/2
t and

(ii) that the mean path for transmitted light 〈ct〉T goes as
H × τα−1

t ,

where α = min{b, 2}. These scaling laws revert to our findings
in section 4.3 for any b � 2 (the upper limit for α), and we

note the difference with the gamma-weighted ICA predictions
in (114).

For a more transport-like mean-field theory, yet closely
related to the above anomalous diffusion model, we refer to
Davis [63]. Therein, a new 1D integral RTE is obtained
and solved numerically, and we refer to this model as
anomalous transport. Large τt behavior is predicted correctly
by anomalous diffusion as far as the scaling is concerned.
However, the τt values at which the asymptotic regime is
achieved are notably large. This casts doubts about the
relevance of (analytic) anomalous diffusion to real cloudy
atmospheres and argues for the more robust (computational)
anomalous transport model.

5.2. Dealing with resolved spatial variability

Suppose now that all the spatial variations of the cloud
optical properties are specified down to some ‘small’ scale.
Furthermore, the radiation fields maybe required down to the
same scale or maybe only to a courser one. Either way, 3D
RT modelers must find ways to deliver answers for the given
3D cloud structure, and not any other. Fortunately, there are
many ways of solving specific 3D RT problems, but implicit
in this challenge is to deliver an answer at some pre-defined
accuracy with an efficiency that may preclude many of the
standard approaches.

So we need to discuss solutions of both the full 3D
RT problem based on the linear Boltzmann equation as well
as more practical approximations thereof. The former are
very briefly described in section 5.2.3, primarily as accuracy
benchmarks. The latter are exemplified by computational
3D diffusion modeling, a problem set up in section 2.4 and
used analytically in section 6.1; for a relatively recent survey
of numerical 3D RT approximation techniques, we refer the
reader to Davis and Polonsky [145].

As an intermediate model that lies at the crossroads of
standard 1D RT, full 3D RT and efficient approximations
thereof, we have the local IPA/ICA, as defined in section 5.2.2.
This is a straightforward answer to the resolved variability
problem: we compute for each vertical column the 1D RT
solution, but do not necessarily perform the spatial average
used in section 5.1.2. At that point, we only had statistical
knowledge of the variability, but here we know all the details.

First, however, we must touch on another issue. If we
are pursuing more realistic modeling of RT in clouds, then it
can only be as realistic as the 3D representation of the clouds
themselves. In the applications, this preliminary question has
to be addressed in order to gauge the computational effort in the
RT. There are both stochastic and physics-based approaches to
cloud modeling.

• It is hard to argue against using state-of-the-art cloud
resolving models precisely because they are based
on a full suite of physics: fluid dynamics, fine-
scale turbulence closures, multi-phase thermodynamics,
cloud microphysics, even radiation (at least from a
1D RT model). These models unfold either in 2D
or (more and more) in 3D. The microphysics, i.e.
droplet-scale processes can use just a few moments
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Figure 14. A convenient stochastic cloud model for 3D RT studies. Left: in the 1st step, a fraction f1 of cloud ‘mass’ is transferred in a
random horizontal direction from one half to the other. For every step after that, a fraction fn is similarly transferred at scale 1/2n such that
fn/fn−1 = · · · = f2/f1. Right: the outcome for one realization at n = 14 when the parameters are f1 = 1/4 and f1/f2 = 21/3. This
so-called ‘bounded cascade’ model [115, 147] has been tuned to yield a 1-point standard deviation of 1/3 of the (unit) mean and 2-point
correlations reflecting a Fourier spectrum in 1/k−5/3. These values are typical of the observed spatial variability of LWP [151] or
LWC [148] for real marine Sc clouds.

or (more and more) the full particle-size distribution.
However, hardware advances are now enabling 3D
dynamics with the so-called ‘bin’ microphysics. Although
they are as physically correct as possible, these models
require the specification of very many atmospheric
parameters and remain computationally expensive.

• Because they are not burdened with the memory
requirement to capture complex multi-physics, specific
realizations of stochastic models can have almost
arbitrarily fine resolution. For the same reason, they
are very efficient. Best of all, they can be tuned to
reproduce the spatial statistics observed in real clouds.
Stochastic cloud models are necessarily based on either
ground-, aircraft- or satellite-based measurements of
cloud structure; so they are constrained at most in 2D.
Currently, there are no operational techniques to determine
full 3D cloud structure, but on-going research may soon
fill this gap [146].

5.2.1. Stochastic versus physics-based 3D cloud models.
Taking a historical perspective, atmospheric 3D RT started
logically with horizontally finite but otherwise homogeneous
clouds (e.g. the spheres used in section 3.3). Then the
3D RT community moved to stochastic models that enabled
much progress in 3D RT phenomenology during the 1990s.
One of the more popular stochastic models was the bounded
cascade introduced by Cahalan in 1994 [115]. Its simple
generation algorithm is described in figure 14, and one
realization is plotted. It is custom-designed to have a power-
law horizontal wavenumber spectrum in k−5/3, although other
exponents between −2 (included) and −1 (excluded) can also
be obtained. This mimics what has been observed again
and again in nature. Moreover, the 1-point statistics of the
bounded cascade are lognormal-like as is also observed in
real clouds. Finally, the bounded cascade has interesting
multifractal properties [147], again as seen in in situ data
from real clouds, i.e. long records from aircraft sampling

the horizontal fluctuations of microphysical properties such
as LWC [148, and references therein]. But there are other
stochastic models that can do all that just as well [149, 150].
So which one to use? It can start as simple as a matter of taste.
However, the robustness of the 3D RT results with respect to
cloud model swap should ultimately be checked.

The bounded cascade, and other such scale-invariant
constructs (cf [150, and references therein]), thus offered the
community a simple way of producing geometrically plane-
parallel clouds that had a rich statistically realistic texture in
their horizontal structure. 2D generalizations were quickly
developed for the bounded cascades and other fractal and
multifractal stochastic models, and just as quickly put to use
in MC simulation studies [152, 153]. Part of the power of
stochastic cloud modeling is that only a small number of
parameters need to be specified (say, �4) as input to control
the rules that draw on a pseudo-random number generator.
Output is a cloud field with realistic 1- and 2-point statistics,
possibly more. If necessary, any number of statistically
indistinguishable realizations of the same stochastic model can
be generated.

Eventually, non-parametric but data-driven stochastic
models were developed [154–158, among others], which will
generate realizations with the same specified statistics as
(almost) any type of multivariate cloud data. In a sense, these
models have very many parameters: the number of data points
or, at least, the number of bins in the histograms, correlation
functions etc., used to synthesize new realizations.

From there, it is a small step to go from such evolved
stochastic models to physics-based dynamical cloud models,
which over time were getting undeniably better (with more
physics, hence more realism and more resolution). It is
revealing that, in this review, the older work we cover is
based on bounded cascades and kindred stochastic models
(cf section 8.1.2) while the most recent work is based
on cloud scenes generated with LES models and CRMs
(cf section 8.2.2). It is also revealing that contemporary LES-
based cloud models can use the fractal properties of their
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output as validation that they are correctly capturing the highly
nonlinear physics [159].

5.2.2. The local IPA/ICA. In section 5.1.2 we presented the
IPA/ICA as a statistical technique based on available 1D RT
theory to cope with unresolved spatial variability by averaging
the 1D RT results over the 1-point cloud variability. However,
in the present problem posed by resolved cloud structure, the
idea of using 1D RT to predict not just a domain average but
also the fluctuations of the radiation field itself is worthy of
consideration.

Assume, for simplicity, that only the extinction coefficient
σ(x, y, z) varies spatially within a plane-parallel medium
Mpp(H) occupying the space between z = 0 and z = H ;
Mpp(H) need not be the full support of the extinction field
since there can be substantial regions of optical void inside
Mpp(H). With this option in mind, it is not much of a constraint
to assume the outer cloud geometry is plane-parallel.

Formally, we can define without reference to any grid

τ(x, y) =
∫ H

0
σ(x, y, z) dz. (115)

All other optical properties, single-scattering albedo �0 and
phase function P(Ω′ → Ω), including asymmetry factor g in
(20), are assumed uniform in Mpp(H), but only for simplicity.
The local IPA/ICA prediction for, say, reflected boundary flux
is then F1D(x, y) = µ0F0R(τ(x, y), �0, g; µ0).

Let us put this idea into the broader context. The
uniform plane-parallel slab model for clouds is much maligned
by the 3D RT community, for scientifically sound reasons
(cf section 6). However, that simple model is actually just one
possible approximate solution to a difficult problem. Granted,
one that has been abused. This abuse has established the
plane-parallel model as an apparently immutable standard of
reference, in atmospheric 3D RT research.

In the not too distant future, we hope to have this
perspective reversed. At present, the plane-parallel model
presented as the only one deemed a priori to be ‘practical’
enough for use in operational settings. We would rather see
the plane-parallel model be humbly submitted as a possible
approach, with advantages and flaws, to the challenging
problem of radiation transport in the real 3D world. At
that point, 3D RT becomes the standard of reference in the
optics and energetics of the Earth’s cloudy atmosphere. In
the interim, we continue to use the plane-parallel slab model
(where, by definition, all net horizontal fluxes are neglected) to
predict even highly resolved radiation fields. Consideration of
computational limitations should be secondary, partly because
computational resources are improving tremendously from
decade to decade (roughly the life-cycle of a major program
or mission) and partly because of on-going efforts described
in sections 7–8 to mitigate—even exploit—3D RT effects.

5.2.3. Computational 3D RT. There will always be a need
for high accuracy and high precision benchmarks in 3D RT.
In this subsection, we overview the two general numerical
techniques: random and deterministic quadrature methods.

The interested reader is referred to a relatively recent survey
by Evans and Marshak [160, and references therein] for more
details. For a recent survey of the various 3D RT models in
use and an illustration of their typical capability, we refer to
Cahalan et al ’s [161] overview of the Intercomparison of 3D
Radiation Codes (I3RC). The I3RC is a grass-roots initiative
that built up a challenging suite of cases designed to exercise
the models with increasing scene complexity.

In short, there are discretization (deterministic) and
probabilistic (Monte Carlo) methods for solving the integro-
differential 3D RTE in (8), and there are potentially very
powerful hybrid methods [162, 163].

Preliminaries. For easy reference, we rewrite the steady-
state version of (8) succinctly as

LI = SI + q, (116)

where L is the (differential) linear transport operator Ω ·∇ +σ ,
S is the (integral) scattering operator σs

∫
4π

P (Ω′ · Ω)[·] dΩ′

and q is the (optional) source term. This equation can be put
in a purely integral form,

I = KI + Q, (117)

where
K = L−1S (118)

is the full transport kernel and

Q = L−1q. (119)

The physical interpretation (and numerical implementation)
of the integral operator L−1 is an upwind ‘sweep’ through the
3D medium, in this case, collecting in Q all the light directly
transmitted, using (12), from the primary sources in q to the
generic point-and-direction of interest (x,Ω). We will assume
steady sources for the time being.

Formally, the solution of (117) can be written as a
Neumann series

I = (1 − K)−1 Q =
∞∑

n=0

KnQ. (120)

Both deterministic and Monte Carlo methods capitalize on
this expansion by successive iterations of K. The physical
interpretation of the series is radiance contributions from
successive orders of scattering. The convergence rate of the
Neumann series, and possibly its acceleration, is a central
question in numerical transport methods. Theoretical analysis
of this key issue is out of our present scope, but it should be
known that it involves the eigen-value spectrum of the integral
operator K in (118): numbers η that give non-trivial solutions to
Kφ = ηφ where φ are eigen-functions. The radiative transfer
equation has a unique positive eigenvalue that corresponds to
a unique positive eigen-function. See Case and Zweifel [164]
and Vladimirov [165] for more details.

To make this classic decomposition more transparent,
suppose we know all the terms in (120) for some RT problem
with everywhere conservative scattering (�0 ≡ 1), and we
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call them I (1)
n ; the Neumann series then becomes I (1) =∑∞

n=0 I (1)
n . Then suppose we want to know the solution of

the same problem but with some uniform level of absorption
(i.e. 0 � �0 < 1). We can factor out �0 from each term in
(120), leading to

I (�0) =
∞∑

n=0

I (�0)
n =

∞∑
n=0

�n
0 I (1)

n , (121)

where the nth term of this Taylor series in �0 is the contribution
to I (�0) of radiation scattered n times. Although it is
physically impossible to filter orders of scattering, some
instruments are designed to select them as best possible. Sun-
photometers use in principle only the 0th-order term I

(�0)
0 ,

while standard lidars use in principle only the 1st-order term
I

(�0)
1 . In practice, both these types of observation need to

be examined and possibly corrected for the presence of all
the higher-order terms as soon as they collectively exceed the
tolerance threshold for systematic overestimation.

Considering the expansion of the steady-state Green
function into its order-of-scattering components in (121), it
is interesting to note that both G

(�0)
0 (x,Ω) and G

(�0)
1 (x,Ω)

are singular in the following sense. Given a distribution source
terms δ(x−x0)δ(Ω−Ω0), where either x0 or Ω0 span less than
their full supports, there is a measurable subset of points (x,Ω)

in the transport phase space where the resulting superposition
I (�0)
n (x,Ω) (n = 0, 1) has discontinuities. An interesting

corollary of this singularity property in inverse transport theory
[166, and references therein] is that, with full and perfect
knowledge of only these two terms, one can reconstruct exactly
both σ(x) from I

(�0)
0 and σs(x)P (x,Ω′ · Ω) from both.

Computed (x-ray) tomography works because �0 ≈ 0 in
(121); moreover, the robust features in x-ray images that enable
the reconstruction technique to overcome the effects of noise
and residual scattering result directly from those singularities.
The corresponding instrument in atmospheric research is the
sun-photometer, only interested in the non-scattered sunlight
I

(�0)
0 . Lidar and all forms of radar are only interested in I

(�0)
1

for a special value of Ω′ ·Ω = −1, and they are indeed our main
sources of tomographic information about the atmosphere.

All higher-order terms, n � 2, in (121) are smooth even
for a single δ-source. Consequently they are an impediment
to standard tomographic methods, lidar and radar in particular.
Near the end of this review, we will describe a novel type of
lidar (as well as a closely related passive solar technique) that
performs a limited but useful form of cloud tomography using
only the diffuse multiply scattered light field.

Finally, both deterministic and Monte Carlo (MC)
methods can be generalized to account for time-dependence.
This is, however, by far easier with MC methods than to have to
discretize t deterministically. Even though this new dimension
is not much extra burden on computer memory, one needs to
carefully maintain congruence with the discretization of x in
order to keep the numerical scheme stable. By contrast, in
a MC scheme, it is as simple as adding path ct as a fourth
independent variable to (x, y, z) when generating the random
trajectories; ct is just the running sum of all the steps between
scattering events, without the direction cosines that apply to

the propagation in spatial variables. Many time-dependent
MC results were used to generate the figures in the previous
section.

Deterministic methods. Both deterministic and Monte Carlo
methods call for a grid, Cartesian or otherwise convenient,
or an unstructured mesh, to define (in computer memory) the
spatial variability of the optical medium as well as the source
term q. It covers a finite subset M of R

3. Deterministic
methods also need the spatial grid to discretize the differential
part of the 3D transport equation represented in (116) by
LI . Furthermore, these methods call for a discretization of
direction space (‘SN ’ methods)—or a truncated expansion
in spherical harmonics (‘PN ’ methods)—or both, to treat
the scattering integral represented by SI . The algorithm
specified in (120) is technically known as ‘source iteration,’
and there are clever ways of accelerating its convergence,
cf [167–169, among others].

The atmospheric 3D RT community is overwhelmingly
dominated by Monte Carlo modelers, but there is one
deterministic model called the spherical harmonics discrete
ordinates method (SHDOM) by Evans [170] that evolved
naturally from his spherical harmonics spatial grid model
[171], adding the efficiency of spherical harmonics to the
angular integrations and adaptive grid refinement in the spatial
domain. SHDOM is freely available and quite widely
used. Recent and welcome additions to this too short list of
deterministic codes are the EVENT [172, 173] and RADUGA
[174] models but, as far as we know, they are not openly
distributed. Another interesting development is the application
of wavelet transforms to the numerical solution of the 3D
RTE [175, 176]. This recent effort was inspired by an early
attempt at spatial representation of the 3D RTE by horizontal
Fourier transforms [177], but leads to potentially far more
efficient multi-scale methods with sparsely populated matrices
to process.

Figure 15 shows an SHDOM computation. It is a
detailed 3D rendering of the directionally averaged radiance
field, J (x, 0, z)/4π from (13), for the rotationally symmetric
boundary-source Green function of a uniform cloud in the
spatial domain. It is plotted both inside and outside the cloud
using a logarithmic color-scale.

Monte Carlo methods. Where MC methods depart funda-
mentally from their deterministic counterparts is that they only
need a grid or mesh to define the spatial distribution of optical
properties and sources. After that, the elements of K in (118)
are used as rules to generate a random realization of a Markov
chain of propagation and scattering events. The integral source
term Q is used to generate random starting points and the chain
is stopped, in the absence of absorption, when it crosses the
boundary of M . In the presence of absorption, there is a finite
probability of terminating the chain inside the medium; alter-
natively, the ‘weight’ of the roaming Monte Carlo ‘particle’
can be reduced to track absorption. There are various ways
of tallying Monte Carlo particles, with or without weights, to
estimate precisely what is asked of the 3D RT model.
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Figure 15. A transect of mean radiance for the pencil-beam illumination problem inside a finite homogeneous slab, from SHDOM. The
optical medium is a uniform non-absorbing (�0 = 1) plane-parallel cloud of thickness H = 1.2 km and extinction σ = 30 km−1, hence
optical thickness τ = σH = 36. The phase function is for a ‘C1’ droplet-size distribution for λ = 532 nm. Mean radiance, J/4π from (13),
is plotted for a domain larger than the cloud itself. A close look at the logarithmic color-scale reveals that the light field in the cloud is
decaying exponentially with distance from the source as dictated by ρ� in (86). The ‘rays’ emanating from the source region near the top of
the cloud are an artifact of the discrete ordinates scheme (in this case, Nµ = 12 and Nφ = 24). This result was graciously contributed by
Dr Franklin Evans (University of Colorado).

Monte Carlo is at its best when tasked to compute spatial
and/or angular integrals. Formally, we seek [179]

E = (f, I ) =
∫

4π

∫∫∫
M

f (x,Ω)I (x,Ω) dx dΩ, (122)

where dx denotes dx dy dz. Function f describes the response
of a virtual detector inside or at the boundary of M . The
bigger the support of f , the better the accuracy achieved for
E, simply because all the more histories will contribute. We
know the convergence rate is slow, in 1/

√
N (where N is the

total number of histories generated); so the size of the support
of f matters for the variance of the estimator, but its choice
is dictated by the application. So, for a given application, in
atmospheric RT in particular, there is always a tradeoff study to
perform between deterministic and MC methods, as recently
emphasized by Pincus and Evans [180].

Now, independently of f , there are many clever ways of
reducing MC variance in general [181, 182, among others],
and they find their way into atmospheric RT applications
[183, 184, among others]. The most effective are to use an
approximate deterministic solution to guide the Markov-chain
sampling and determine the weight multiplier; these are the
so-called ‘hybrid’ methods [163] and they remain an area of
open research.

It is important to note that, in MC simulation, there is
no need to forcibly truncate the Neumann series in (120).
Indeed, if a MC particle wanders for too long (or into regions
of less interest) by some criterion, it can be terminated at
the flip of a digital coin ... or continued (temporarily) with
twice the weight. This game of ‘Russian Roulette’ increases
somewhat the variance, but ensures that there is no bias in the
estimate of E.

It is also important to remember that, if f describes a
domain-scale integration, as in the estimation of total (as
opposed to local) reflectance or transmittance, MC can be
not only more accurate but also faster than a deterministic
estimate. In the deterministic model, radiance is computed
everywhere whether or not it is required. When local values

of the boundary-leaving fluxes—and worse still radiance—are
required, then deterministic methods have an edge.

As in figure 15 for SHDOM, figure 16 shows MC estimates
of Green functions for a homogeneous plane-parallel cloud.
In this case, we are looking at boundary-source/boundary-
detector Green functions. The numerical noise is evident and
increases as expected as the number of locally tallied histories
decreases, i.e. as the distance from the source increases.

6. Assessment of 3D damage to 1D RT modeling

There has been a sustained interest in spatially variable sources
in uniform media, this review included (cf figures 15–16).
However, the vast majority of atmospheric 3D RT studies
are based on spatially variable media and uniform sources.
From the earliest theoretical studies [8] to the most recent data
analyses [185], the latter use 1D RT as a reference. It may
seem strange to use such a coarse representation of reality as
a standard benchmark but we must bear in mind that, when
it comes to the applications, RT is generally just a means
to an end. So there is usually an expectation—and often
a requirement—of expediency. Typically, the effects of 3D
RT with respect to this benchmark are quantified under some
reasonable assumption such as conservation of the total mass
(i.e. number of material particles responsible for the scattering
and absorption). We think of this activity as an assessment of
the damage that 3D RT causes for the accepted operational
1D solution to the RT problem embedded in virtually all
applications.

6.1. 3D RT phenomenology: how radiation flows around
opaque regions and is channeled into the tenuous ones

One-dimensional atmospheric RT modeling is always aligned
with the vertical (z) axis. Cloud shadows cast by the Sun under
oblique incidence (as seen through an airplane window) are the
most obvious cloud-related 3D RT effect. This may not be a
big concern in the case of extensive stratiform clouds since
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Figure 16. Boundary fluxes for the pencil-beam illumination in a 2 × 2 km2 domain for a finite homogeneous slab, from a MC scheme. The
optical medium is a uniform non-absorbing (�0 = 1) plane-parallel cloud of thickness H = 0.3 km and optical thickness τ = 13. The phase
function is the H–G model in (33) with g = 0.85. Boundary fluxes are plotted for reflectance (left), R(x, y) = F−(x, y, 0), and transmission
(right), T (x, y) = F+(x, y, H), on 128×128 grids. The isophotes are on a log-scale, so we recognize the exponential decay controlled by ρ�

in (86). Double-headed arrows on the side indicate the RMS values for ρ, i.e. 〈x2 + y2〉1/2
F (F = R, T ). The signature numerical noise of the

MC method is visible at the lowest light levels. In this case, 108 histories were traced and this particular cloud has R ≈ T ≈ 0.5, leading to
≈0.5% noise in the center and ≈5% near the edge. Reproduced from [178].

they have, in the sense of fractal geometry, much more bulk
than boundary both in 3D space and under vertical projection.
However, we are curious about how this zeroth-order scattering
statement generalizes to diffuse light and how it flows through
3D media such as cloudy skies.

As far as we know, not much can be proven analytically
in full 3D RT in a scattering medium. Consequently, general
statements about 3D RT phenomenology tend to be qualitative
and substantiated largely by numerical experiments. The
present authors have attempted to create at least one exception
to this rule. There is a price, however, which is to use
the asymptotic limit of 3D RT captured by diffusion theory
and, moreover, to assume isotropic (rather than collimated)
boundary sources. There is no doubt that many instances
of solar RT in real clouds are in the diffusion regime, as
compellingly demonstrated by King et al [186] using in-cloud
radiometry. However, we already know that diffusion does not
do so well in the radiative boundary layer, with a few MFPs
from all boundaries. It appears that this is not a roadblock.

The details of the derivation are in the 2000 paper by Davis
and Marshak [121]. Here we will only state, illustrate and
discuss the ‘theorem.’ Let M be a 3D optical medium based
on M0 = {x ∈ R

3; 0 < x < Lx, 0 < y < Ly, 0 < z < H }: it
is contained in a plane parallel slab of thickness H along the
vertical and its spatial variability in M0 is replicated cyclically
in the horizontal plane with periods Lx,y in the x, y directions,
respectively. The medium is purely scattering (�0 = 1) and
with horizontally averaged and scaled optical depth (1 − g)τ

sufficiently large for diffusion to be a reasonable model for the
RT. Sources are uniformly distributed on cloud top (z = 0)
but, as previously stated, modeled as isotropic, i.e. we neglect
radiative boundary-layer effects in this solar case, with F0

being the incoming flux, normal to the cloud top. Cloud
base (z = H ) is purely absorbing. We use the homogeneous
cloud case as a reference for the total transmittance/reflectance
computations, e.g. R1D results from the fixed mean extinction

σ = 1

LxLyH

∫∫∫
M0

σ(x) dx = τ

H
.

We then compare to R1D the corresponding outcome R3D for
any realization σ(x) of the optical variability with the same
mean. Note that holding the mean σ(x) constant is equivalent
to conserving mass, cf (9) for the relation between σ(x) and
scattering particle density.

The flow obeys ∇ · [σt(x)−1∇J ] = 0 with Robin-type
BCs [1 − χσt(x)∂z]J |z=0 = 4, [1 + χσt(x)∂z]J |z=H = 0.
Domain-average reflectance is then given by

R3D = R(x, y) = 1

2LxLy

∫ Lx

0

∫ Ly

0
J (x, y, 0) dx dy − 1.

A straightforward but tedious non-perturbative computation
yields [121]

δR

R1D
= 3χ

δσ(x)δFz(x)

σF0
, (123)

where δR = R3D − R1D, δFz(x) = F (3D)
z (x) − F (1D)

z (z) and
δσ (x) = σ(x) − σ . So the relative change in R caused by 3D
effects is proportional to the spatial correlation between

• fluctuations of extinction—hence of density—relative to
and normalized by its mean value and

• deviations of net vertical flux from the 1D RT prediction
(based on the mean extinction) and normalized by the
incoming flux.

Figure 17 shows schematically how these quantities vary
in opposite directions. This systematic anti-correlation will
clearly dominate the spatial averaging. We thus predict that
δR < 0: reflectance of a 3D cloud is always less than
reflectance for the homogeneous medium with the same total
amount of scattering material.

This prediction applies to the large-scale flow of radiation
in (or around) clouds. The same forecast was made
in section 5.1.2 based on the ICA as applied to domain
averages. However, the present computation makes no
such approximation. One can imagine 3D optical media
decomposed into vertical columns of finite width where each
column has the same total optical depth (large enough for
diffusive transport to prevail), but the distribution of extinction
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Figure 17. Schematic of radiation channeling at a non-absorbing
wavelength. Regions with positive and negative fluctuations of
extinction are illustrated for a geometrically plane-parallel cloud
under uniform normal or diffuse illumination. They have opposite
effects on the local values of the vertical component of the vector
flux. Reproduced from [121].

Figure 18. Radiation channeling by a finite cloud under oblique
illumination. Both the reflected-to-space and transmitted-to-ground
radiance fields are affected, positively by the flux deflected on the
illuminated side, negatively by the shadowing. Reproduced
from [121].

in each one is random. In this case of constrained randomness,
RICA = R1D yet we still have R3D < R1D because of how
the radiant energy is ‘channeled,’ to adopt the expression of
Cannon [187]. As seen in figure 17, the solar radiation is
essentially reflected off the opaque regions of the cloud and
concentrated into the tenuous ones.

The inherently 3D phenomenology of radiative channeling
emerging from the above analysis is based, for simplicity,
on an isotropic illumination scenario. The symmetry of the
illumination can be thought of as a spatial average over the
hemisphere illuminated at any one time by the Sun. However,
the idea of a uniform cloud layer covering the planet as a
reference is not very helpful. So it is of interest to ask about
channeling in the case of a collimated and, in general, oblique
illumination. Figure 18 illustrates this situation, and we see
that the 3D cloud-driven perturbation of the flow contributes
to the reflected light returning space and to the transmitted light
that reaches the surface. We thus expect that 3D effects not
captured by the ICA will largely, but not completely, cancel in
quantities averaged over extended domains.

6.2. Large-scale fluxes for GCMs, small-scale fluxes for
LES/CRMs

The essentially constant irradiation of the Earth with solar
radiation, from the UV to the shortwave IR, is the primary

source of energy for the climate system. So the climate-
driven task for RT is to compute across the whole solar
spectrum how much energy is deposited at the surface, how
much in the various parts of the atmosphere, and how much
goes back to space. Other physical models take care of
the rest of the story: what happens to the influx of solar
heat as it is pooled with other types of heat flux (e.g. phase
changes).

The fundamental quantity of interest here is −∇ · Fλ

in W m−3 nm−1. Once spectrally integrated, it is eventually
converted into the solar contribution to the heating rate
expressed in ◦ day−1. By conservation of radiant energy (16)
for steady sources, this rate can be computed from σaλ(x)Jλ(x)

as long as both direct and diffuse radiation are included, that
is when the Qλ(x) ≡ 0 convention is used in (8) and the
solar irradiation is captured in the BCs (37) for the RTE.
So the kinetic recipe is simple: (i) determine what is the
local density of radiant energy Jλ(x)/c in J m−3 nm−1 from
(13), then (ii) multiply by the local collision rate cσaλ(x) for
radiative absorption processes in s−1, then (iii) integrate over
the solar spectrum. This is of course easier said than done
with RT models. The spatial scale at which we wish to know∫ ∞

0 (−∇ · Fλ) dλ will determine the approach. In the quest
for improved methods for treating the spatial RT problem it is
equally important to keep in mind that the spectral integration
also has inherent error, which has been studied in great detail
under the 1D RT assumption [188, 189]. From the end-user’s
perspective, only the total (spatial+spectral) error that matters,
as well as the computational effort (in CPU cycles) it takes to
get the answer.

Figure 19 illustrates schematically the two main situations
encountered in atmospheric RT targeting the energy budget.
The rather large domains spanned by a single cell in a typical
GCM or a generic column in a CRM.

In the former case (upper left-hand panel), net horizontal
fluxes are arguably of minor importance. Indeed, from our
investigation of the spatial Green function in transmission
or reflection, we suspect that horizontal fluxes will unfold
at most over scales comparable to the thickness of the
medium. In this case, the medium is much wider than it
is thick. So there is at least a chance that horizontal fluxes
will cancel. On the other hand, it matters greatly to get
the vertical fluxes right. So it seems that we will have to
address vertical correlations in clouds [190] sooner than their
horizontal counterparts [191]. This is the ideal situation for the
ICA and that approximation has indeed proven very effective
in improving the problem of RT in GCM grid-cells; see
section 7.1.

In the latter case (right-hand panel of figure 19), what
is happening in neighboring columns clearly matters a lot.
In this model for small-scale cloud processes, it is patently
absurd to force the radiation to flow up and down ... yet
that is what is done routinely. This is the effect of legacy:
radiation parametrizations in CRMs are inherited from GCMs,
the obvious place a dynamical modeler would go to find a
radiation scheme. This radical modeling short-cut is certainly
efficient, but is it justified?
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Figure 19. Schematic of the GCM solar RT problem and the same for a cloud-process (CRM or LES) model. The aspect ratio of the GCM
grid-cell on the right-hand since it is very large; this is very helpful in simplifying the RT problem, largely by bringing the ICA to bear on
the estimation of the domain-average heating rate profile. The aspect ratio of a typical column in a CRM or LES is roughly the inverse of
that of the GCM grid-cell; this is a scenario for all kinds of 3D RT effects, starting with shadowing cells downstream from the Sun, and
re-illuminating ones upstream. From [145].

Mechem et al [192] recently showed that it is justified to
rely on the ICA based on an extensive study of coupled
3D RT (using SHDOM) and cloud dynamics (using the
University of Oklahoma bin-microphysics LES) ... for
nocturnal boundary cloud simulations. Of course, the only
radiation in these studies was in the TIR spectrum, which is
emission/absorption-dominated. Solar radiation by contrast is
scattering-dominated. Although absorption by the surface or
(gases and particles in) the air is a necessary ingredient for
dynamical impact, scattering redistributes the radiant energy
J (x) in all three spatial dimensions in highly non-trivial
ways. We are not aware of any systematic investigation of
the impact of solar 3D RT effects (shadowing, channeling, etc)
on cloud dynamics using computational multi-physics models.
We suspect the effect can be significant. A preliminary
study of 3D–1D solar RT differences in cloud dynamics
using the community Weather Research and Forecasting model
[193] led to a ≈10% difference in precipitation during the
life-cycle of a convective storm system (O’Hirok, personal
communication).

In summary, it remains an open challenge to devise a
way of computing 3D solar heating rates in 3D cloud models
efficiently enough to be coupled to the fluid dynamics in the
physics-based simulation.

6.3. Scale breaks: the spatial Green function revealed

6.3.1. The Landsat scale break. Without the benefit of
angular and spatial integrations that promote cancellations,
remote sensing signals (i.e. small-scale radiances) can be
affected by 3D RT effects much more than domain-average
fluxes. Consider high-resolution imagers such as the Thematic
Mapper (TM) on Landsat with 30 m pixels, the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), even the MODerate resolution Imaging Spectro-
radiometer (MODIS) and the Multi-angle Imaging Spectro-
Radiometer (MISR) with 15 m, 250 m and 275 m pixels,
respectively on NASA’s Terra platform. Every element of
radiant energy in those small pixels that originated from
somewhere else in the scene contributes to 3D RT effects
that, by definition, are not captured by the IPA. These imaging
systems indeed have pixel scales that are small compared with
outer cloud scales, in particular, geometrical thickness H .
Recalling that the spatial reach of the transmitted and reflected
Green functions are, to a first approximation, ∼H . That is
precisely how far we expect horizontal/non-IPA transport will
routinely will reach.

Figure 20 shows the Fourier spectrum of a Landsat
(≈30 m resolution) image of a small (≈60 km) portion of an
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Figure 20. The Landsat scale-break, as observed in Fourier space.
This wavenumber spectrum EI (k) for the nadir radiance field is the
azimuthal average of the 2D Fourier mode energies for a large
portion of a Landsat-5 TM image, itself of a small portion of marine
Sc deck off the coast of Southern California. We observe three
distinct regimes where EI (k) goes as k−β : β ≈ 0 (no spatial
correlations), from r = 1/k ≈ 100 to 30 km; β ≈ 5/3 (turbulence),
from 30 to 0.2 km; β � 3 (radiative smoothing), from 200 m to the
Nyquist scale 60 m. Full details in Davis et al ’s paper [178]. The
inset, from [151], shows a 61×61 km2 portion of another Landsat
image (0.52–0.69 µm channel) of the same cloud type captured
during the same field campaign: the 1987 First ISCCP Regional
Experiment (FIRE’87) [194].

extensive and persistent marine strato-cumulus cloud deck.
Such clouds are major contributors to the Earth’s global albedo,
hence climate balance, hence are of considerable interest.
It had been noticed [151, 195] that cloud radiance fields, as
sampled by Landsat, exhibited a break in their k−5/3 scaling
around the equivalent in wavenumber space of about 1/3
to 1 km; at smaller scales (larger wavenumbers) there is a
notable lack of variance relative to the extrapolated scaling
law. Various explanations had been advanced for this scale
break that involved a slew of processes ranging inherent
cloud structure/dynamics (‘it is real’) [151] to a mismatch
of the Thematic Mapper’s sampling (instantaneous FOV)
and true resolving power (‘it is an artifact’) [195]. Davis
et al [178] explained the feature as a clear manifestation of
‘radiative smoothing’ [142, 196], which, in turn, is a direct
consequence of horizontal transport of radiation over scales
commensurate with 〈ρ2〉1/2

R from section 4 on Green functions.
MC simulations of 3D RT in perfectly scaling multifractal
cloud models were performed, which were considered at the
time of heroic proportions (many multi-day runs). They
showed that the scale associated with the critical wavenumber
had the same behavior with respect to H , τ and even g,
as the RMS horizontal transport distance, i.e. ∝√

H�t =
H/

√
(1 − g)τ from (94).

Radiative smoothing is always present but it is truly
evident in wavenumber spectra only if θ0 � 30◦. At more
oblique illumination angles, brightening/shadowing effects
(cf figure 18) produce a radiative roughening in the sense
of enhanced amplitudes in Fourier space [197, 198]. This
enhanced variability becomes manifest at scales determined
by the amplitude of cloud-top height variations (�H ) after
projection along solar rays, hence H × tan θ0.

6.3.2. The Zenith-radiance scale break. If one can
essentially visualize the spatial Green function for reflection
in the Fourier spectrum of nadir radiance fields captured by
space-based imagers with sufficient resolution, what about
zenith radiance that reaches ground? Imaging is not an option
but one can certainly point a narrow FOV (NFOV) radiometer
upward at a ground station and collect a time series of zenith-
radiance measurements Izen(time). This is in fact quite easy
to do, as long as radiometric calibration (and especially its
maintenance) is not a requirement, as is the case here: only
relative fluctuations are of interest, so the notorious ‘arbitrary
units’ are good enough. Then, to interpret spatially what was
measured temporally, Taylor’s frozen turbulence hypothesis is
invoked: Izen(space) = Izen(time)|time=space/mean wind.

The left panel in figure 21 shows Izen(x) from under
an extensive St layer based on NFOV data for a non-
absorbing (red) wavelength collected on 8 October 1998,
at the Chilbolton Observatory (51.13◦N, 1.43◦W), UK, by
Savigny et al [199, 200]; their sampling rate was 2 Hz, their
longest record covered ≈4 h (≈3 104 measurements), and they
were able to collect on three other days during the same
month. Rather than the frequency or wavenumber (Fourier)
spectrum, the 2nd-order structure function was used: SF(r) =
[Izen(x + r) − Izen(x)]2. It has the advantage that, if there are
data drop-outs, they can simply be skipped. As for the k-
dependence of the wavenumber spectrum, one naturally seeks
power-law behaviors in r:

√
SF(r) = [Izen(x + r) − Izen(x)]2

1/2 ∼ rh, (124)

where h is the Hurst exponent, a.k.a. the (global) Hölder–
Lipschitz exponent.

A variant of the Weiner–Khintchin theorem for non-
stationary processes with stationary increments relates the
wavenumber spectrum and the 2nd-order SF(r) [201]: they
form a Fourier transform pair. In particular, if the spectrum
scales as k−β with 1 < β < 3 then β = 2h + 1 and,
more generally speaking, h = min{1, max{0, (β − 1)/2}}.
Recognizable scaling behaviors are h = 0 for all stationary
processes (i.e. that are de-correlated over the associated range
of r), h = 1/3 for turbulence-like variability (corresponds
to a Fourier spectrum in k−5/3, as for the simple fractal cloud
model in figure 14) and h = 1 for all smooth (i.e. differentiable)
fields. Interestingly, all three of these regimes are present in
the right-hand panel of figure 21:

(i) at the smallest scales, up to the extent of the transmitted
Green function, which is ∼H , Izen(x) is a smooth function
(h � 1);
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Figure 21. The zenith-radiance scale break, as observed in the time domain using Taylor’s frozen turbulence hypothesis. Left: the solid
black lines show the time series of Izen in arbitrary units, resampled in order to show the whole record and leaving same visual impression as
turbulence; the inset displays a small sample of the raw 2 Hz data showing the fully smoothed fluctuations. The bold gray points are for the
ground-based time series of broadband flux; it behaves like a smoothed version of Izen, but for a different reason: the angular integral of all
the down-welling radiance corresponds to a large-scale spatial average determined by the cloud ceiling height. Right: SFs for Izen and the
broadband flux as functions of r expressed in samples. A nominal 5 m s−1 wind speed was used in the Taylor hypothesis and the exponent ζ2

is denoted 2h in the main text. Reproduced from [199].

(ii) at the intermediate scales, the transmitted sunlight in
Izen(x) follows the general turbulence-like structure of the
cloud (h � 1/3);

(iii) at the largest scales, the fluctuations of transmitted
sunlight are de-correlated (h ≈ 0).

The small-scale behavior is as expected in a fully 3D RT
regime where radiative smoothing occurs, noting that finite-
size effects and noise prevent the empirical value of h from
reaching the theoretical limit of unity. The two larger-
scale behaviors are as expected in IPC/ICA regimes where
the 1D RT model is a reasonable approximation, preferably
adjusted for unresolved variability effects using one or another
of the approaches described in section 5.1. Savigny et al
[199] found the predicted transition from smooth behavior
to turbulence-like behavior at time lags that translated (via
Taylor’s hypothesis) to spatial scales commensurate with the
thickness of the cloud deck, which was known through a
collocated millimeter-wave radar.

6.4. Retrievals of cloud properties

The above discussion of scale breaks is in the context of
forward 1D RT modeling error. However, an immediate
consequence is that the mapping of higher radiances to higher
optical depths in 1D RT can be in error. At a minimum,
the pixel adjacency effects manifested in radiative smoothing
lead to PDFs of τ that are too narrow, but there can also
be systematic biases due to unresolved variability. That is
just a beginning. Numerous studies have focused on 3D-
induced cloud remote sensing error (a few examples follow)
and this issue continues to attract interest; see [202] for a recent
statistical inquiry.

6.4.1. Cloud optical depth retrievals. The RT model used in
standard satellite remote sensing retrievals of cloud properties
is entirely 1D, being based on two main assumptions:
clouds are horizontally homogeneous inside each satellite pixel
(no unresolved variability effects), and the radiative effect
of neighboring pixels is negligible (no resolved variability
effects). Under these conditions, clouds can be represented as
infinitely wide plane-parallel slabs with uniform, or possibly
z-dependent, properties.

Horváth and Davies [203] quantified how frequently the
above assumptions are met globally as a function of pixel
scale using a high-resolution data set. Specifically, they used
the above-mentioned MISR radiances reflected from water
clouds over ice-free oceans. MISR views the Earth from the
Terra platform at four VNIR wavelengths with nine cameras,
ranging from a 70◦ zenith viewing forward through nadir
to 70◦ viewing aft [204]. The time interval between the
two most oblique observations is 7 min and the cross-track
resolution is 275 m. Accurately co-registering the multi-angle
observations, Horváth and Davies compared direct retrievals
of cloud optical depth τ based on 1D RT [82] calculations
for each camera. Their test used a passing rate based on 5%
uncertainty as defined by the spread of the MISR pixel-scale
retrievals across the nine cameras. Figure 22 shows the results
of the comparison for clouds with τ > 3. We see the passing
rate increases with pixel size, i.e. clouds behave increasingly
like plane-parallel slabs in direction space as the resolution is
degraded. For a resolution of ≈1 km, only 20% of water clouds
pass the test while at ≈10 km resolution this number increases
to 35%. This does not prove that the retrieved τ is accurate
(substantial effects are expected from unresolved variability at
such large scales), but at least there is directional consistency
with the 1D RT model.

For the above-mentioned MODIS instrument, which is
onboard both Terra and Aqua platforms, Várnai and Marshak
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Figure 22. Angular test for cloud ‘1Dness.’ Passing rate for
Horváth and Davies’ angular filter for 3D RT contamination is
plotted as a function of pixel resolution. Clouds with (apparent)
τ > 3 were used. The tolerance for τ retrieval error, as defined by
variance of the inferred τ across MISR’s 9 cameras, was set to
±5%. Reproduced from [203].

[205] used another criterion to study the effect of cloud
inhomogeneity on optical depth retrievals. In contrast to
MISR, MODIS takes measurements from a single viewing
direction but at 36 wavelengths between 0.4 and 14 µm, with
a spatial resolution of either 250 m, 500 m, or 1 km, depending
on the wavelength8. MODIS operationally retrieves cloud
optical depth τ and effective particle size re using the two-
wavelength 1D Nakajima–King algorithm [206]. To quantify
3D RT effects, one can see that illuminated cloud pixels will
appear systematically thicker than the shadowed ones, Várnai
and Marshak combined MODIS’ VIS and TIR images at 1 km
resolution. Capitalizing on the strong thermal stratification of
the atmosphere, TIR radiance variations can be used to retrieve
cloud-top height, from there, normals are computed, followed
by the pixel-scale solar incidence angle. The observed
asymmetry between the sunny-side and shadow-side pixels
was then used as a measure of the deviation of cloud structure
from the assumption of plane-parallel geometry. Figure 23
illustrates the asymmetry for two SZAs: 30◦ and 65◦. Each
point here represents a separate 50×50 km2 area. These panels
show that 3D effects are much stronger for oblique illumination
and thicker clouds. Based on 3D RT calculations for simple
stochastic cloud models, Várnai and Marshak [207] suggested
that the mean retrieval uncertainty caused by 3D effects can be
parametrized in a simple linear form as

δτ ≈ τ × (θ0/300◦), (125)

where θ0 is the SZA expressed in degrees. For example, for

8 Resolution degrades as λ increases, largely to keep the SNR at an acceptable
level across the spectrum.

oblique illumination of θ0 = 60◦, the relative error is in the
order of ±20%.

The first example includes only the (lower) liquid water
clouds, while the second study accounts for all clouds: low
and high, ice and liquid, overcast and broken. However,
if the analysis is limited to Sc only, the retrieval errors
caused by the 1D assumptions will be much lower. Indeed,
200–400 m thick marine Sc can cover areas of 1000 km in
size and are, perhaps, the ‘most plane-parallel’ clouds [123].
As an example, Zinner and Mayer [208] first simulated 3D
fields of marine stratocumulus at high horizontal resolution,
and then used a sophisticated MC model [209] to calculate
the radiation reflected from clouds, as it would have been
measured by satellite instruments with different resolutions.
Then they compared the results of 1D retrievals with the
known cloud optical depths. They found that for MODIS’
1 km resolution, the 1D assumptions of neglecting resolved
and unresolved variability result in errors within 5–20%,
depending on SZA. Recently, Kato and Marshak [210] studied
the dependence of cloud optical depth retrieval errors on
solar and viewing geometries. Their marine Sc fields were
generated using an LES-based cloud-process model [211] and
satellite measurements were simulated with Evans’ SHDOM
model [170]. Based on their simulations and MODIS viewing
and solar geometry, they concur with Zinner and Mayer,
concluding that the error of cloud optical depth retrieval for
marine Sc, at least over northeastern Pacific, was on average
less than 10%.

6.4.2. Cloud droplet-size retrievals. When discussing the
retrieval of cloud optical depth τ in the previous section,
we implicitly assumed it to be independent of cloud droplet
size, as defined conventionally by re in (3). This assumption
is not generally valid and MODIS in fact retrieves the pair
{τ, re} from two-band combinations [206]: one liquid water
absorption band (1.6, 2.1 or 3.7 µm) and one non-absorbing
band (0.65, 0.86 or 1.2 µm) [212], recalling from section 2.2
that σa ∼ re to a first approximation. The choice of non-
absorbing band depends on the underlying surface. Since
water absorbs differently in the three MODIS absorbing bands,
the less absorbing (1.6 µm) band and the more absorbing
(3.7 µµm) band complement the 2.1 µm band. Recall
from diffusion theory in the presence of weak absorption
(section 3.1.5) that reflected radiance originates primarily from
a layer of thickness Ld ∼ (σaσt)

−1/2 in (73), which is �H if
absorption matters. Thus, the trio of absorbing channels with
different values of σa(re) coarsely probes the vertical variation
of droplet size in the upper portions of the cloud [213, 214].

The operational MODIS algorithm provides retrieval
uncertainties for both τ and re for each cloudy pixel. This
uncertainty is derived from the sensitivity of τ and re to plane-
parallel homogeneous cloud top reflectance, quantified using
partial derivatives of τ and re with respect to reflectance in
both water-absorbing and non-absorbing bands [216]. The
usual sources of uncertainty to be considered are calibration,
atmospheric corrections and surface albedo. In this subsection,
we discuss the further uncertainty in retrievals of re caused by
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Figure 23. Asymmetry of cloud optical depth retrievals between sunny-side pixels (vertical axis) and shadow-side pixels (horizontal axis).
Each point represents average optical depth in a 50 × 50 km2 area. Only areas with cloud fractions larger than 10% were examined. Left:
θ0 = 30◦. Right: θ0 = 65◦. Reproduced from Horvath A and Davies R 2004 Simultaneous retrieval of cloud motion and height from
polar-orbiter multiangle measurements Geophys. Res. Lett. 31 L01102. Copyright [2004] American Geophysical Union. Reproduced by
permission of American Geophysical Union.

unaccounted 3D cloud structure, both resolved (at scales larger
than a pixel) and unresolved (at a sub-pixel scaled).

The effect of unresolved variability follows directly from
the highly nonlinear relationship between reflectance and
effective radius re, through the single-scattering co-albedo,
1 − �0 = σa/σ . That relationship is monotonic (a good thing
for remote sensing); specifically, it is a decreasing and convex
function; to see this, we can think of R(∞) = 1 − A(∞)

in (75) as a rough approximation of how reflectivity depends
on 1 − �0 ∝ re at large but finite τ . Because of the strong
convexity of R(∞) (in −√

re), the ICA-type average of sub-
pixel reflectances will be smaller than the pixel average of
the effective radii [215]. In other words, ignoring sub-pixel
variability of re always results in a retrieval that underestimates
the true pixel-averaged value. The stronger the nonlinearity in
the relationship, the larger the underestimation.

As compared with the effect of unresolved variability on
the retrieval of re, the radiative effect of resolved pixel-to-
pixel variability is not so straightforward. However, under
some general assumptions (reasonable for large enough τ

and re, say, τ > 10 and re > 5 µm), Marshak et al [215]
found that pixel adjacency effects will always increase the
domain-averaged retrieved re with respect to the value that
would be retrieved in a uniform plane-parallel surrounding.
In other words, ignoring the resolved variability leads to an
overestimation of the domain-average droplet size. Note that
this is opposite to the negative bias from sub-pixel variability.

We illustrate here the retrieval of re using a cumulus cloud
field generated with an LES model [211]. The cloud field
consists of 100 × 100 × 36 cells with grid sizes 66.7 × 66.7 ×
40 m3, respectively. Figure 24(a) shows optical thickness and
figure 24(b) cloud-top height. For simplicity, cloud droplet
scattering has been described by a Mie phase function for
constant re = 10 µm. For SZA at 60◦, with illumination
from the north (top of images) and a surface albedo α of 0.2,
nadir radiance fields at the non-absorbing (0.67 µm) and water-
absorbing (2.13 µm) wavelengths calculated with a MC code
are shown in figures 24(c) and (d), respectively.

We now assume that τ and re are unknown. They are then
inferred for each cloudy pixel from the pair of reflectances

{R0.67, R2.13} using the Nakajima–King retrieval algorithm
[206]. We will focus on the retrieval of re, comparing inferred
values with the predetermined re = 10 µm.

We see in figure 24(e) that about 30% of all cloudy pixels
have a saturated value of re at 30 µm. This is the area where
R2.13 is low. Low reflectance at 2.13 µm can result from either
(i) small optical thickness, (ii) large effective radius, (iii) dark
surface, (iv) 3D radiative effects, shadowing in particular
or (v) any combination of the above. The average optical
thickness, τ , of pixels with a retrieved value of re = 30 µm is
24, which is quite large; the true re of those pixels is 10 µm, and
the surface is relatively bright (α = 0.2 at both wavelengths).
Thus the most likely reason for small R2.13 is shadowing.

The smallest scale in figures 24(a)–(e) is 67 m. Spatial
averaging of the measurements improves somewhat the
retrievals. Figure 24(f ) shows the retrieved values of re when
both R0.67 and R2.13 are averaged over 5×5 pixels (335 m)
before the retrieval is performed. Indeed, the number of
saturated pixels with respect to re decreased from 30% to 18%,
i.e. averaging dilutes the shadowing effect, and thus lowers the
retrieved value of re.

It is interesting to relate the retrievals of re to the retrievals
of optical thickness τ . Following Cornet et al [217], we
subdivide all cloudy pixels into two categories based on their
retrieved values of cloud optical thickness. Pixels where the
true optical thickness, τ3D, is larger than the retrieved optical
thickness, τ1D, will be called ‘shadowed’ while pixels with
τ1D > τ3D will be called ‘illuminated;’ see figure 25. As
was pointed out by Cornet et al , the retrieved re in the
shadowed regions (τ1D < τ3D) are much larger than the ones
in the illuminated ones (τ1D > τ3D), as if there was more
absorption [118, 218, 219]. To conclude, overestimation of re

corresponds to underestimation of τ .

6.5. Aerosol optical depth retrievals, near broken clouds

Aerosols are very poorly understood agents in the climate
system, particularly their impact on cloud optics [16] and
physics [15]. Aerosol optical thickness (AOT) is therefore
a high-value retrieval from satellites because global coverage
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Figure 24. 3D RT effects in cloud droplet-size retrievals. (a) Cloud optical thickness field. (b) Cloud-top height above the surface. The
cloud is illuminated from the north with a 60◦ SZA. Droplet scattering is described by a Mie phase function computed with re = 10 µm. The
surface is assumed to be Lambertian with uniform spectrally invariant surface albedo 0.2. (c) Nadir reflectance fields at 0.67 µm calculated
by MC with 5 × 108 histories. The average simulation error is less than 2%. (d) Same as in panel (c) but for nadir reflectance at 2.13 µm. (e)
re retrieved from reflectances on panels (c) and (d). (f ) Same as in (e) but for reflectances averaged over 25 pixels. Reproduced from [215].

is necessary to track the long-range transport and property
evolution of the airborne particulates, starting at their sources.
Some are anthropogenic, coming from industrial activity,
deliberate biomass burning and all manner of land-use change.

Numerous studies based on satellite observations have
reported a positive correlation between cloud amount and
AOT [222–226]. This positive correlation can be explained

as a result of physical phenomena such as the humidification
of aerosols in the relatively moist cloud environment, or
it can result from remote sensing artifacts such as cloud
contamination of the cloud-free fields of view used in the
aerosol retrievals.

There are two ways that clouds affect the retrievals of
aerosols [137]: (i) the existence of small amounts of sub-pixel
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Figure 25. Correlation between retrieved re and τ for ‘illuminated’
and ‘shadowed’ areas in the Cu cloud field in figure 24. Radiance
was averaged over 2 × 2 pixels (134 m grid). The horizontal dashed
line indicates the true re = 10 µm, prescribed uniformly across the
simulated cloud scene. Note that the maximal allowable retrieval
value was set to 150 for optical thickness τ and to 30 µm for
effective radius re. Reproduced from [215].

size clouds in pixels identified as being cloud-free and (ii) an
enhancement in the illumination of the cloud-free column
through the reflection of sunlight by nearby clouds. When
the pixels are relatively large, only the first type (unresolved
variability), cloud contamination is considered. The second
type (resolved variability), also called the ‘cloud adjacency
effect,’ is more pronounced when satellite pixels are relatively
small (e.g. ∼0.5 km for MODIS and MISR). Kobayashi et al
[227], Cahalan et al [228], Nikolaeva et al [174] and Wen et al
[220] studied the cloud adjacency effect when cloud-free pixels
are brightened by reflected light from surrounding clouds using
3D RT calculations. Both cloud contamination and the cloud
adjacency effect may substantially increase reflected radiation
and thus lead to significant overestimates of the AOT. However,
these two types of cloud effect have different impacts on the
retrieved AOT:

• sub-pixel clouds increase AOT by increasing the apparent
contribution due to large particles (aerosol ‘coarse’ mode
composed of sea salt, dust, etc);

• cloud adjacency mostly increases the apparent contribu-
tion due to small particles (aerosol ‘fine’ mode composed
of smoke, ash, pollution, gas-to-particle conversion prod-
ucts, etc).

We illustrate here the effect of cloud adjacency for broken
cumulus clouds as observed by MODIS and ASTER. ASTER
views the Earth from nadir direction at high (15 m) spatial
resolution [229]. Figure 26(a) shows a 68 × 68 km2 ASTER
image of a region in Brazil taken on 25 January 2003, when
biomass burning occurred. The 15 × 15 km2 box in the left
lower corner is also zoomed in figure 26(b). The original 15 m
resolution imagery was aggregated to the 90 m resolution and
cloud optical depth τ was retrieved. Wen et al [220] then used

3D and 1D RT calculations to determine the cloud-induced
‘enhancement’ as the average difference between the 3D and
1D reflectances for all cloud-free pixels

δR = R3D(x, y) − R1D. (126)

Figure 26(c) shows the cloud-induced enhancement field
R3D(x, y)−R1D in clear-sky regions at 0.47 µm, assuming the
same amount of aerosols (AOT = 0.1) for the whole scene.
We see that clouds enhance the reflectance almost everywhere;
the average enhancement δR is 0.019, which corresponds to
roughly 0.1–0.2 increase in AOT. From the climate modeling
perspective, this enhancement is much too large to be ignored
[230]. As shown by Wen et al [231], 80% of this enhancement
is due to cloud-to-molecule scattering interaction even though
the Rayleigh optical thickness at 0.47 µm, 0.186, is not much
larger than the AOT. However, aerosols are forward-peaked
scatters, although less than cloud droplets (with g ≈ 0.7, down
from 0.85). So the broader vertical distribution of molecules
and the lateral illumination geometry from clouds to intra-
cloud regions with substantial fractions of their local direction
space covered by bright illuminated cloud boundaries favor
the near-isotropic scattering of molecules toward space. In
more quantitative terms, scattering angles encountered in the
retrievals of aerosol properties are typically between 90◦ and
130◦ and, in this range, phase functions for aerosols are much
smaller than the Rayleigh phase function; see figure 3 where the
H–G model, as a representative of typical aerosol scattering,
is about an order of magnitude lower than Rayleigh.

Figure 27 demonstrates a striking example of a good
correlation between clear-sky reflectances observed by
MODIS (on the same Terra satellite as ASTER) and simulated
reflectances for the same pixels that were generated assuming
constant aerosol optical thickness throughout the whole scene
plotted in figure 26(a). The simulated clear-sky reflectance
values were obtained through 3D RT calculations that account
for the distribution of cloud optical properties retrieved from
MODIS and ASTER radiances. The correlation between
observed and simulated values indicates that, in reality, higher
clear-sky reflectance is not necessarily caused by larger AOT.
It could rather be a 3D RT effect of Cu clouds in neighboring
areas. How to unravel real and apparent variations of aerosol
quantity and quality in the vicinity of clouds remains an open
research question in remote sensing science.

7. Mitigation of 3D damage to 1D RT modeling

For the past couple of decades, we have seen increasing effort
by atmospheric 3D RT specialists to bring to the broader
community of RT end-users practical ways of making their
modeling more realistic than with the familiar 1D RT they use,
often without questioning its applicability. This is true for
applications to radiation energy budget estimation as well as
to cloud, aerosol and surface remote sensing.

7.1. Large-scale fluxes for GCMs, small-scale fluxes for
LES/CRMs

At first glance, the problem of 3D RT through an atmospheric
column populated with broken and/or multiple cloud layers
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Figure 26. Impact of cloud-induced 3D RT on clear-sky nadir radiances and associated aerosol retrievals. (a) ASTER image centered at
(0◦N, 53.78◦W) acquired on 25 January 2003. Panels (b)–(c) are zoomed into the lower left-hand corner. (b) Cloud optical depth retrieved
from ASTER at 90 m resolution. The cloud cover is 59%; average cloud optical depth is 14. (c) Enhancement of reflected radiation due to
3D RT effects for clear regions at 0.47 µm. Cloudy pixels are masked as white. The mean enhancement δR in (126) is 0.019. Reproduced
from [220].

seems intractable, except maybe with heavy-duty numerical
methods. Depending on what radiative properties are targeted,
that first impression may be quite inaccurate.

7.1.1. The GCM solar RT problem. Consider the problem
described in section 6.2 on computing solar heating rates (i.e.
broadband radiative flux divergence) in large domains such
as GCM grid-cells, ∼100 km on a side. Surely we can start
by neglecting radiative interactions with neighboring regions
since the vertical extent of the cloudy layer (10–15 km) is
small by comparison with the horizontal size. Moreover,

in mainstream GCMs only a few pieces of information are
provided about the clouds, layer-by-layer: cloud fraction,
mean cloud optical depth (and maybe its variance), as
well as cloud optical properties resulting from microphysics
(especially �0 and g for the 2-stream computation) as
functions of wavelength.

This is clearly fertile ground for all three classes of 3D RT
techniques overviewed in section 5.1 that address unresolved
variability: homogenization/effective medium, ICA and mean-
field approaches. They have all been used with varied
degrees of success. However, we must note that, until quite
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Figure 27. Reflectance measured by MODIS versus 3D RT
simulations assuming constant AOT. The plot includes those 0.5 km
pixels that were used in calculating operational MODIS aerosol
product at 10 km resolution [221]. This figure was graciously
contributed by Dr Guoyong Wen (NASA-GSFC/UMBC-GEST).

recently, it was not clear what ‘success’ means. This is
indeed a situation where we know that doing nothing leads to
systematic bias, by Jensen’s inequality. But the extra burden
in CPU cycles is a serious concern, any improvement must
be computationally cost-effective. So this led to a burst of
creativity in the 3D RT community during the 1990s described
briefly in section 5.1 and in more depth by Barker and Davis
[114] in a relatively recent survey. In the mid-2000s, the
steady progress in computer hardware performance enabled
the emergence of CRMs, leading to MMFs. At the same
time, it made MC the standard approach in 3D RT. So, even
though the RT embedded in CRMs is still 1D (cf section 7.1.2),
they deliver 3D cloud structures of immediate relevance to
GCMs. CRMs were developed largely for that purpose.
Computing vertical profiles of the domain-average radiative
heating rate with MC is now very feasible, and approximating
that outcome is the goal of any new parametrization of RT
in GCMs.

There has not been a systematic comparison of the
numerous candidate 3D RT models for unresolved cloud
variability based on the above-mentioned testbed provided by
CRMs and MC, not even of one representative from each of
the three categories. However, a major comparison study of
all existing 1D RT models has been performed [12]. A key
player was the gamma-weighted two-stream approximation
(GWTSA) of Barker co-authors [127–129] described in
section 5.1.2 and used to illustrate the statistical version of
the ICA. A clear winner emerged from the comparison study
that generalized the GWTSA: the MC independent column
approximation (McICA) model developed, specifically with
GCMs in mind [232]. McICA is an efficient numerical method
of estimating large-scale broadband boundary fluxes and flux-
divergence profiles, hence radiative heating/cooling rates, that
is unbiased with respect to the local ICA standard used in

CRMs. It creatively merges the concepts

• of MC, viewed simply as a robust random quadrature
method (rather than a numerical solution of the 3D
RTE) and

• of IPA, appropriately renamed ICA (for independent
column approximation) in this context of radiation energy
budget computation, where there are no pixels per se.

Recall that we target here the domain-average broadband
fluxes, hence spatial–spectral-angular integrals of the radiance
field that matter for the energy budget in a single grid-cell
of a GCM. Since such domains extend for 50–200 km in
both horizontal directions, one can capitalize on the quasi-
cancellation of all localized 3D RT features affecting both
reflection and transmission. Ideally, we would like to bring
the residual 3D–1D (spatial domain) RT modeling error down
to the level already accepted by the GCM community for the
spectral-domain computations. McICA basically pools these
inevitable modeling errors and uses a random quadrature rule
for the combined spatial and spectral integrations. This has the
curious effect that, for one sample in a McICA sub-gridscale
computation, a cloudy sub-column is randomly generated
(with specified rules) and assigned a random wavelength.

In spite of the MC part of the acronym, there is actually
no 3D RT going on here beyond the above-mentioned test
cases for model performance assessment/comparison. The
statistical version of the ICA is accepted as good enough for the
climate modeling application at hand. However, current GCMs
predict at best a fractional cloud coverage of the horizontal
domain for each of many atmospheric layers: Ac(n) for the
nth layer. The most basic optical properties for the cloudy
and clear portions are also predicted, only those required by
the two-stream/diffusion 1D RT model: optical depth τ , single-
scattering albedo �0 and asymmetry factor g. See section 3.1.3
(�0 = 1) and section 3.1.5 (�0 < 1) and also refinements in
the literature accounting for the collimated solar beam directly
transmitted to layer n [70]. Since, by definition, the ICA makes
no attempt at the RT impact of spatial correlations of cloud
structure in the horizontal plane, the only remaining issue is
how to distribute the cloudy portions of the GCM grid-cell
vertically. How to place it in layer n, in view of clouds in
neighboring layers n ± 1?

The generally accepted rule is known as the ‘maxi-
mum/random overlap’ rule: if two adjacent layers have non-
vanishing Ac(n), then the cloudy portions are required to over-
lap as much as possible; if there is a cloud-free layer between
two cloudy ones, overlap is random. It is not easy to work
out the combinatorics underlying this rule explicitly [12]. So,
at the spatial core of the McICA model is a stochastic sub-
column cloud generator that circumvents this awkward maxi-
mum/random overlap rule and uses instead a simple exponen-
tial decorrelation law [233]. The price to pay for the elim-
ination of any intra-ICA modeling bias by adopting McICA
sampling is of course the numerical noise inherent to the MC
quadrature method. So we have to ask, in the context of GCMs:
is accuracy more important than precision? In an application
where the proper partition of the energy budget matters a lot,
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we of course require an accurate (unbiased) answer and, more-
over, experimentation has shown that GCM models can assim-
ilate dynamically a considerable amount of MC integration
noise [234].

In summary, McICA has proven to be a very good stop-gap
solution in GCM-driven RT modeling that balances adaptively
the error in spectral and spatial integrations. Over the past
few years, the McICA has been adopted by most GCMs [235],
including the majority of those mature enough to be used in the
comprehensive assessments and forecasts of the anthropogenic
effects on the climate system published on a regular basis by the
Intergovernmental Panel on Climate Change (IPCC) [11, for
the most recent release].

7.1.2. The LES/CRM solar RT problem. What about LES-
based cloud-process models and CRMs? And, by extension,
what about those ‘research’ GCMs that incorporate CRMs in
each ∼100 km cell? Based on our discussion in section 6.2, the
associated ranges of scales (tens of meters to a few kilometers
for LES, and 1 km to 100 km in CRMs) are highly vulnerable
to inherently 3D effects, especially in the LES range. If the
dynamical cloud model is used in lieu of the stochastic sub-
column cloud generator in the McICA, little difference is noted
in the domain-average fluxes [236]. That is to say that, as
far as the radiative part of the large-scale energy budget is
concerned, added realism in cloud representation has a small
impact within the framework of 1D RT. The remaining question
is the quantitative impact of 3D RT effects not captured by the
ICA on the detailed cloud dynamics, as captured by CRMs. If
it has little impact, then why? The issue cannot be put to rest
confidently unless there is sufficient understanding. If it does,
then what can be done about it in a practical way? How does
one design representative case-studies and, since 3D MC will
be the almost unavoidable benchmark, how can we guarantee
uniformly accurate heating rates across a large CRM grid?

At the time of writing, these remain open questions. For
a survey of the highly desirable class of 3D RT approximation
(efficient-yet-accurate-enough) models that target the detailed
spatial distribution of solar heating rates, we refer the interested
reader to Davis and Polonsky’s relatively recent review
[145, and citations therein].

7.2. Cloud remote sensing, corrected for 3D RT effects

In the previous subsection, we have gone from the GCM issue
of unresolved cloud variability, and its state-of-the-art McICA
solution, to the current challenge of 3D ‘adjacency’ effects
of individual cloudy cells in LES models or CRMs. Moving
on to radiances instead of fluxes, and narrow-band spectral
sampling rather than broadband integration, we now address
remote sensing concerns.

Here, the pixel scale can be too small for 1D RT to
be anywhere near realistic, even if the clouds are stratiform
(near-plane-parallel outer geometry). More precisely, the
pixel footprint is so small that, even if it were internally
homogeneous, net horizontal fluxes coming from denser or
more tenuous neighboring pixels will affect observed radiances
at cloud top or cloud base. Can we mitigate local biases caused

by radiative interactions between adjacent small-scale pixels,
and thus estimate what a 1D RT treatment of a real 3D cloud
would yield?

Alternatively, can’t we just retroactively make the pixel
big enough that we can ignore these net horizontal fluxes and
focus only on the pixel-average vertical transport? Maybe, but
this tactic of avoidance (as opposed to mitigation) leads right
back to the issue of unresolved variability that will then have
to be accounted for.

7.2.1. Nonlocal independent pixel approximation (NIPA).
We describe here a specific method proposed as a step toward
improved accuracy of cloud property retrievals based on the
business-as-usual procedure involving 1D RT models. We first
consider satellite imagery, and then ground-based time series
measurements of zenith radiance where the notion of a pixel
is replaced by a short radiometric exposure to down-welling
diffuse radiation within a narrow FOV instrument.

With their ∼30 m pixels, NASA’s series of Landsat
missions, carrying Thematic Mapper instruments, are by far the
most popular assets delivering high-resolution cloud imagery,
high enough that it is affected significantly by adjacency
effects, cf section 6.3.1. To the best of our knowledge, the
first deliberate attempt to go beyond quantification and attempt
to mitigate this inescapable 3D RT effect in clouds was by
Marshak et al [237] who proposed the ‘nonlocal IPA’ (NIPA).

NIPA is based on the intuitive idea that multiple-
scattering processes cause an apparent smoothing of the cloud
structure, as observed in the remotely sensed radiance field
[142, 196, 178]. Rather than run a full 3D RT simulation
with an expensive MC code, or even a more efficient grid-
based solver such as SHDOM [170], one can simply apply a
low-pass filter (smoothing kernel) to the IPA prediction, the
computational cost of which has already been accepted. This
approximate 3D RT method works well, at least for stratiform
clouds under near-normal illumination.

We note that what is required here is the Fourier transform
P̃ (�k) of the smoothing kernel P( �ρ) since we wish to perform
the convolution product of P and the IPA-derived radiance
field IIPA( �ρ) in the horizontal plane:

INIPA( �ρ) =
∫∫

P( �ρ ′)IIPA( �ρ − �ρ ′) d �ρ ′, (127)

which becomes a simple product in Fourier space, ĨNIPA(�k) =
P̃ (�k)ĨIPA(�k). The Fourier-space reflected Green functions for
point-wise illumination can be put to use here. They will
depend parametrically on H , τ , g and �0. Depending on
whether local albedo or nadir radiance is targeted, we could
choose a spatial Green function for isotropic (section 4.1) or
normal [108] illumination.

Marshak et al [237] had an even more pragmatic approach.
Eschewing normalized solutions in Fourier space of boundary-
value PDE problems, they used a convenient two-parameter
expression like (110) but for ρ instead of τ and averages
based on cloud radiative Green functions. The authors did
their proof-of-concept computations with cloud models having
optical depth variability in a single horizontal direction, say, x.
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The required 1D Fourier transform of (110), with τ 
→ |x| and
division by 2 (to cover the support extended to all of R), yields

P̃ (k) =
cos

[
a tan−1

( 〈|x|〉k
a

)]
[

1 +

( 〈|x|〉k
a

)2
]a/2 . (128)

This smoothing kernel acts in Fourier space as a particular kind
of low-pass filter; features rather gentle power-law cut-offs in
k−a at wavenumber k� ≈ 1/〈|x|〉R . z

Power-law tails in P̃ (k) are a natural choice to reconcile
the spatial correlations observed in satellite images of extensive
stratocumulus [178] with those observed with airborne in situ
probes [148] for the same type of cloud system. The latter
have scale-invariant (power-law) internal structure, obviously
driven by turbulence; specifically, one finds extinction
(actually, LWC) fluctuations in k−5/3, typically over scales
from approximately tens of kilometers down to tens of meters.
Satellite (nadir-looking) radiances also have this trend, which
follows from the IPA (a nonlinear but monotonic mapping of
local τ to local radiance), but only down to a scale found
by numerical simulation to be ≈

√
〈ρ2〉R [196, 178]. Above

the associated cut-off wavenumber, a trend approaching k−3

is found.
Figure 28 illustrates the NIPA procedure for the fractal

model for variable stratiform clouds described in figure 14.
The differences between MC, IPA and NIPA are easy to see.
The upper panel shows, on the one hand, τ(x) for a 2 km
portion of the synthetic fractal cloud that extends to 12.8 km
(and is periodically replicated beyond that). On the other
hand, both MC and IPA predictions are plotted for the local
albedo: we see how the IPA responds immediately to the fractal
variability while the MC results are much like a running mean
over several pixels. The lower panel shows MC, IPA and
NIPA predictions for the local value of nadir radiance over
the same portion of cloud. By comparing the two registered
panels, we see that the MC radiance field is not as smooth as
its counterpart for albedo, patently because there is no angular
integration. The NIPA computation used the smoothing kernel
in (128) with 〈|x|〉 = 0.1 km (8 pixels) and a = 0.5. Finally,
the bottom curve shows how much the prediction error with
respect to MC ‘truth’ is reduced by going from the IPA to
the NIPA.

That completes the description of NIPA as a means to
improve the realism of the forward IPA model by introducing
scale-specific smoothness. The inverse NIPA consists in
taking actual or synthetic cloud radiances and applying the
corresponding roughening filter to restore the IPA and, from
there, perform straightforward retrievals of (say) the cloud
optical depth field. Formally, that amounts to solving (127),
viewed as an integral equation, for IIPA( �ρ) knowing INIPA( �ρ)

from 3D RT computations, as in the present demonstration or
from observations [238].

In an ideal (infinite-accuracy, noisless) world, one only
needs to perform the inverse FFT of ĨIPA(�k) = ĨNIPA(�k)/P̃ (�k).
However, 1/P̃ (�k) is a high-pass filter that will amplify any

Figure 28. Comparison of simulated reflectivity fields for a portion
of a fractal stratocumulus cloud. Top: on the left-hand axis, we read
the 1D horizontal variation in x of local optical depth τ(x) (lower
curve); the vertically uniform cloud is generated with a 10-step
bounded cascade process described in figure 14 with τ = 13 and
H = 0.3 km (pixel/grid-scale = 12.5 m). The upper curves
(right-hand axis) in the same panel show the associated fluctuations
of albedo R(x), the normalized up-welling flux in (49) for steady
and uniform illumination, using both IPA and MC schemes; SZA is
22.5◦ and scattering is according to a Deirmendjian C1 phase
function at a red wavelength for simplicity (both water- and
land-surface albedoes are negligibly small). Bottom: the right-hand
axis is the same as in the top panel but for normalized nadir radiance
in (41) rather than hemispherical flux, under the same conditions of
spatially uniform and steady illumination, and the computational
NIPA scheme is added. The lower curves (left-hand axis) highlight
the reduced error with respect to MC when NIPA is used instead of
IPA. Reproduced from [150].

noise or small-scale numerical error. This is a classic ill-
posed (i.e. numerically unstable) inverse problem. Marshak
et al [237] demonstrate on ‘observations’ obtained with a MC
code (where the ‘truth’ is known) that careful Tikhonov-type
regularization [239] can be used to estimate IIPA( �ρ) even in
the presence of considerable noise from the MC scheme itself
and, from there, obtain reasonable estimates of the local value
of τ from a pre-computed inverse map of τ to nadir radiance
based on 1D RT.

7.2.2. Other 3D–1D RT compensation methodologies.
NIPA’s use of spatial Green functions is not unique in the field
of efficient 3D–1D RT compensation techniques. A notable
effort involves an adjoint perturbation formalism for forward
3D effects as defined by δE = E3D−E1D = (f, I3D−I1D) from
(122), where f is used to define a specific feature of interest,
such as an instrument response. The perturbation I3D − I1D

is evaluated from spatial Green functions operating on the
perturbed transport and scattering operators in (116). Formal
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expansions were derived to arbitrary order [240] and the first-
order theory was worked out on specific examples [241].

Neural networks were also brought to bear by Cornet and
co-authors on the problem of forward 3D RT [242, 243] and
inverse 3D RT based on simulated observations [244–246].
Another statistical approach based on multivariate regression
has been explored [247]. All these algorithms show a
substantial improvement in retrieval accuracy. However, all
of them are still in ‘research’ mode and much work would
have to be done to implement them in an operational pipeline
for retrieving cloud optical depth from satellite measurements
on the fly.

It is commonly believed that the more observations of
solar radiation reflected from clouds into different directions
are used, the more accurate the retrieved cloud properties will
be. Evans et al [248] recently asked themselves if we can
do better with multiple viewing angles, as compared with
nadir-only reflectance. They simulated MISR multi-angular
measurements with SHDOM for a large number of cloud fields
generated with an LES model. They then retrieved the mean
and standard deviation of τ(x, y) using a neutral network
algorithm trained on some of the LES + SHDOM fields and
evaluated on the others. They found that for large Sc clouds,
multi-angular measurements decrease the mean optical depth
retrieval error by 20–40% (respectively, for 45◦ and 25◦ SZA)
while for small Cu clouds the retrieval error decreases only by
13%. These small improvements for Cu clouds suggest that
multiple directions do not necessarily contribute substantially
to more accurate retrievals. However, the statistical retrievals
based on 3D RT, even with only one direction, were shown to be
much more accurate than standard retrievals based on 1D RT.

7.3. Broken cloud impacts on aerosol property retrievals

As previously mentioned in (section 6.5), cloud–molecular
interaction is the dominant mechanism for cloud-induced
enhancement of the reflectance in the cloud-free column, at
least for shorter wavelengths and boundary-layer cumulus over
dark surfaces [231]. Here we assume that the enhancement is
entirely due to Rayleigh scattering, i.e. the enhancement comes
from the re-illumination of the molecular layer through the
reflection of sunlight by the surrounding clouds. Consider
a simple two-layer model with broken clouds below and a
uniform molecular layer above (figure 29, top panel). Marshak
et al [137] recently suggested that the cloud enhancement of
reflected radiation, δR, be defined as the difference between
the following two radiances: R1 reflected from a broken cloud
field with a scattering Rayleigh layer above it and R2 reflected
from the same broken cloud field but with the molecules in
the upper layer causing extinction, but no scattering. In other
words,

δR = R1 − R2, (129)

where, as in (55),

R1(θ0, θ) = Rm(θ0, θ) + Tm(θ0)
αc(τ, θ0)

1 − αc(τ, θ0)R
(dif)
m

T (dif)
m (θ),

(130)

R2(θ0, θ) = Rm(θ0, θ) + Tm(θ0)αc(τ, θ0)T
(dif)

m (θ), (131)

Figure 29. Schematic of the two-layer 3D stochastic model for
cloud enhancement estimation. Top: optically thick but broken
clouds are below, with an optically thin Rayleigh scattering layer
above. Bottom: two examples of the Poisson distribution of broken
clouds. These fields both have cloud fraction Ac = 0.30 in a
10 × 10 km2 area. For a cloud vertical thickness of 1 km, the left
panel has cloud aspect ratio γ = 2 and the right panel has γ = 1.
The uniform plane-parallel limit of the model corresponds to Ac = 1
for any γ . The two-state (cloudy/clear) ICA limit is obtained for any
0 < Ac < 1 and γ → ∞, meaning a single very flat (i.e.
plane-parallel) cloud radiance with weight Ac in the domain-average
and clear-sky radiance with weight 1 − Ac.

sub-index ‘m’ standing for molecular and ‘c’ for cloud.
Rm(θ0, θ) is the reflectance for the molecular layer with no
clouds below (known technically as ‘planar albedo’). Cloud-
layer reflectance, viewed here as a lower surface, is denoted
accordingly αc(τ, θ0); it is the critical parameter in this simple
model because, in addition to cloud optical depth τ and SZA θ0,
it depends on the broken cloud layer’s geometry. Tm(θ0) is the
transmittance through the molecular layer with direct sunlight
incident from above while T

(dif)
m (θ) is the transmission through

the molecular layer for diffuse illumination from below, into
direction θ . Finally, R

(dif)
m is the reflectance of the molecular

layer illuminated by diffuse radiation from below (known
technically as ‘spherical albedo’). With the sole exception of
αc, all the quantities in (129)–(131) are 1D and are calculated
using a standard plane-parallel RT code.

To calculate the cloud reflectance for broken cloudy
regions, αc, we can use a one-layer Poissonian model for
broken clouds originally proposed by Titov in 1990 [131].
The main parameters in the model are (i) cloud fraction Ac;
(ii) average cloud optical depth τ , which is normally quite
large and (iii) cloud aspect ratio, γ , defined as the ratio of
the cloud’s horizontal to vertical dimensions. One can also
think of aerosols filling the space between the clouds with
AOT τa(λ), which is normally quite small. The lower panel
of figure 29 shows examples of two broken cloud fields with
the same value of Ac = 30% and γ = 2 and 1. Output
of the stochastic RT model is the azimuthally and domain-
averaged upward and downward fluxes, with downward fluxes
subdivided into diffuse and direct components.

48



Rep. Prog. Phys. 73 (2010) 026801 A B Davis and A Marshak

Note that, out of the three principal input parameters, two
(averaged cloud optical depth, τ , and cloud fraction, Ac) can
be determined from the MODIS Cloud Product suite. The
third parameter (cloud aspect ratio γ ) is not readily available.
Fortunately, the cloud enhancement is not very sensitive to the
aspect ratio, at least for small SZA. The results of detailed
numerical simulations of the enhancement by Wen et al [220]
were shown to be in relatively good agreement with this simple
modeling exercise by Marshak et al [137].

It is also interesting to note that the ratio of cloud-induced
enhancements at two wavelengths λ1 and λ2 in (129)–(131)
is only weakly sensitive to cloud properties (τ is almost
independent of λ), and is therefore determined by the Rayleigh
scattering molecular layer. Indeed,

�(λ1, λ2) = δR(λ1)

δR(λ2)
= C(λ1, λ2; θ, θ0)

1 − αc(τ, θ0)R
(dif)
mλ2

1 − αc(τ, θ0)R
(dif)
mλ1

,

(132)

where the R
(dif)
mλ terms are relatively small, and we have defined

C(λ1, λ2; θ, θ0) = Tmλ1(θ0)T
(dif)

mλ1
(θ)R

(dif)
mλ1

Tmλ2(θ0)T
(dif)

mλ2
(θ)R

(dif)
mλ2

. (133)

This means that the ratio of cloud-induced enhancements at
two different wavelengths is essentially independent of cloud
properties, and depends only on θ0 and θ ; hence can be
pre-calculated.

To mitigate the retrieval errors from the cloud-induced
enhancement, Kassianov and Ovtchinnikov [249] recently
proposed to use reflectance ratios to retrieve aerosol optical
depth. Based on (132)–(133), the underlying idea of their
method is that ratios are less sensitive to 3D cloud effects than
reflectances themselves. In other words, they assumed that

�3D(λ1, λ2) = R3D(λ1)

R3D(λ2)
= R1D(λ1) + δR(λ1)

R1D(λ2) + δR(λ2)

≈ R1D(λ1)

R1D(λ2)
= �1D(λ1, λ2), (134)

thus

�3D(λ1, λ2) ≈ �1D(λ1, λ2) ≡ �(λ1, λ2). (135)

Their method was tested in a simulated case using two ratios
at three wavelengths λ1, λ2 and λ3. At given solar and
viewing angles, this approximately constant ratio is a function
of AOT, aerosol model and the underlying surface albedo.
AOT, as a function of wavelength λ, is then described by a
power law, τa(λ) = βλ−α , as in (4); this closes the retrieval
problem with two unknowns (α and β) and two observations,
namely, �3D(λ1, λ2) and �3D(λ1, λ3). The sensitivity of the
proposed retrieval method to errors from measurements and
RT modeling was recently evaluated [250].

8. Exploitation of 3D RT phenomenology in remote
sensing

To summarize the two previous sections, the ‘3D RT is too
complicated and expensive’ argument for keeping operational

cloud remote sensing grounded in 1D RT is getting old,
and hopefully will soon be obsolete, as the community
gains research-based experience and institutional computing
facilities harness more power. Earth, Clouds, Aerosols and
Radiation Experiment (EarthCARE) is a future joint EU-
Japan mission focused on clouds and aerosols, the next
major Earth observation satellite to be launched by the
European Space Agency (ESA) and instrumented jointly
with the Japan Aerospace Exploration Agency (JAXA). With
a planned launch in 2013, EarthCARE is in the planning
stages for its suite of retrieval algorithms, both conventional
and experimental. The latter effort, spearheaded by Barker
(Meteorological Service of Canada) and Donovan (Koninklijk
Nederlands Meteorologisch Instituut), will be synergistic
across multiple instruments and fully 3D as far as RT is
concerned. If successful, the 1D/plane-parallel paradigm will
be on its way out, and the new one will embrace the 3D structure
of the real world. We are confident that NASA’s planning will
be as forward-looking for its future Aerosol, Clouds and ocean
Ecosystem (ACE) mission with, at the time of writing, launch
planned for the 2020 timeframe.

In this final technical section, we take the final step
away from 1D RT and examine some emerging cloud
observation techniques that are inherently 3D—they are not
even conceivable in a modeling framework limited to 1D RT.
Some are astonishingly simple, given the right kind of data.

8.1. Variable cloudiness observed from below, with zenith
radiance

8.1.1. Spectral signatures. Figure 30 shows a 22 minute
fragment of zenith radiance measured by a ground-based
‘Cimel,’ a multi-channel sun-photometer pointing straight up.
The Cimel has a narrow FOV of 1.2◦ and four filters at
0.44, 0.67, 0.87 and 1.02 µm designed for retrieving aerosol
properties under clear-sky conditions. In our example, the
Cimel measured zenith radiance at 20 s temporal resolution
while in ‘cloud’ mode, i.e. constant zenith viewing (as opposed
to a special sky scan optimized for aerosol property retrievals).

There are three distinct regions in figure 30, from left
to right: a single unbroken cloud, broken clouds, and clear
sky. For clear-sky conditions, due to Rayleigh scattering
and optically thicker aerosol at shorter wavelengths, zenith
radiance increases as wavelength decreases from 1.02 to
0.44 µm. By contrast, under cloudy skies, radiances in channel
0.44 and 0.67 µµm are almost indistinguishable; this is also
true for channels 0.87 and 1.02 µm. This is a clear indication
that, in the presence of clouds, the spectral contrast in surface
albedo (back-reflected from clouds) dominates over Rayleigh
and aerosol effects. In contrast to the small fluctuations typical
for clear and overcast skies, broken clouds show sharp changes
in radiances around cloud edges.

More formally, we can distinguish three main cases based
on cloud–vegetation radiative interactions:

(1) Atmosphere dominates. In this case,

I0.44 � I0.67 > I0.87 > I1.02 (136)

and aerosol optical properties can be retrieved.
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Figure 30. Zenith radiance measured by a Cimel sun-photometer
at Greenbelt, MD, on 24 May 1999. Four channels 0.44, 0.67, 0.87
and 1.02 µm are used. The measured radiance has relative
(channel-to-channel) calibration and is normalized by the solar flux
at the TOA in the corresponding spectral interval. The ordinate’s
‘arbitrary units’ are therefore linear for T (abcissa, ẑ) from (42).

(2) Vegetated surface and cloud dominates. In this case,

I0.44 ≈ I0.67 < I0.87 ≈ I1.02 (137)

and cloud optical properties can be retrieved, given the
surface albedo.

(3) Transition between the first two cases. This scenario is
characterized by rapid changes between the ordering of Iλ

from cloudy to clear and back. In this case, neither aerosol
nor cloud properties can be reliably retrieved using only
one wavelength.

By analogy with the well-known Normalized Difference
Vegetation Index (NDVI) [251], Marshak et al [252] proposed
the Normalized Difference Cloud Index (NDCI) defined as the
ratio between the difference and sum of two normalized zenith
radiances measured for two narrow spectral bands in the NIR
(0.87 µm) and RED (0.67 µm) spectral regions:

NDCI = INIR − IRED

INIR + IRED
. (138)

Compared with a two-valued optical depth versus zenith-
radiance relationship that makes its retrieval impossible
without ancillary information [91], the transmitted NDCI is
a monotonic function with respect to optical depth [252].
Conventional methods of estimating cloud optical depth
from surface fluxes use either broadband [253] or multi-
wavelength [254] radiometry, and are expected to work
well only for overcast skies [255]. In sharp contrast, the
NDCI-based retrieval technique is much less sensitive to
cloud structure. The sensitivity is weak because the NDCI-
based method eliminates the part of downward radiation
that did not have interactions with surface; this radiation
is the most sensitive to both illumination conditions and
cloud inhomogeneity [252, 256]. As follows from the
relations in (136)–(137), the NDCI will be negative for a
clear sky and positive for an overcast sky. In the case of
broken clouds, NDCI can take on either positive or negative

values, depending on whether there is a cloud in the zenith
direction or not.

The first shortcoming of the NDCI-based retrieval
technique comes from the underestimation in 1D RT of
zenith radiance for large optical depth in NIR. Indeed, in
the NIR, the 1D RT prediction for radiance systematically
underestimates the actual 3D radiances for large optical
depths. This has a simple explanation: for 3D clouds,
more radiation is transmitted (by Jensen’s inequality and/or
by oblique channeling); thus more surface-leaving radiation
is reflected back from thick clouds to the ground-based
sensor.

Another shortcoming innate to all concepts based on
spectral-indices is that the spectral information is reduced to
one number by algebraic transformation; see, e.g. Tian et al
[257]. In other words, instead of two spectral values of zenith
radiances in RED and NIR, only one, NDCI, is used. Each
measurement can indeed be assigned to a specific point on the
(IRED, INIR) plane, equivalently:

η =
√

I 2
RED + I 2

NIR, (139)

α = tan−1(IRED/INIR). (140)

Both coordinates can depend on the cloud optical depth.
However, NDCI is a function of α only,

NDCI = 1 − tan α

1 + tan α
, (141)

and thus cloud optical depth can vary considerably yet leave
NDCI unchanged.

Instead of using a single index such as NDCI, Marshak
et al [90] directly utilized radiance observations on the RED
versus NIR plane (see figure 31). Since most vegetated
surfaces are dark at red wavelengths and bright at NIR
wavelengths, points above the diagonal correspond to cloudy
situations due to surface–cloud interactions, while points
below the diagonal correspond to clear sky. Since the surface
is dark in the RED region, having the same RED radiances
at points A and B indicates that they have the same values of
cloud optical depth, τ . However, they have different radiances
in the NIR region. Clearly, more surface–cloud interactions
occur and more photons reach the ground for point B. This
indicates that point B corresponds to a smaller cloud fraction
than point A. This can all be made more quantitative in the
method referred to hereinafter as ‘REDvsNIR,’ which retrieves
both optical depth and ‘effective’ cloud fraction from a point
in the RED versus NIR plane. Note that points A and C in
figure 31 have the same NDCI but correspond to different
values of τ and effective cloud fraction.

Next we briefly discuss the REDvsNIR retrieval method
proposed in Marshak et al [90] and validated by Chiu et al [91].
The method retrieves overhead cloud optical properties in any
cloud situation using measurements of zenith radiance at 0.673
and 0.870 µm wavelengths, and only requires the presence of
green vegetation in the surrounding area.

We first note that for plane-parallel clouds over a
Lambertian surface, any ground-based measurement of
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Figure 31. Schematic of the REDvsNIR algorithm. See main text
for description of the method for retrieving cloud optical depth τ
and cloud fraction Ac.

radiance I can be expressed as [258]

I = I0 + T0
α

1 − αR
Is. (142)

The first term on the right-hand side, I0, is downward radiation
calculated for a black (non-reflecting) surface, while the second
term is radiation introduced by interactions between clouds
and the underlying surface. The cloud–surface interactions are
fully determined by α, T0, R and Is, where α is the albedo of the
underlying surface; T0 is the transmittance of monochromatic
flux over a black surface; R is the spherical albedo of clouds for
uniform and isotropic illumination from below; and finally, Is

is the radiance generated at the upper boundary by an isotropic
source at the surface.

Consider the following approximation:

T0 ≈ (1 − Ac) × 1 + Ac × T
(pp)

0 , (143)

where Ac is cloud fraction and T
(pp)

0 is total transmittance over
a black surface in the uniform plane-parallel assumption. We
can then rewrite (142) as an explicit function of cloud optical
depth τ and Ac. For the RED and NIR wavelengths, we
obtain

IRED(τ, Ac) = I0,RED(τ )

+
[1 − (1 − T

(pp)

0,RED)Ac]αRED

1 − αREDRRED(τ )
Is,RED(τ ),

INIR(τ, Ac) = I0,NIR(τ )

+
[1 − (1 − T

(pp)

0,NIR)Ac]αNIR

1 − αNIRRNIR(τ )
Is,NIR(τ ), (144)

where it is assumed that the dependence on Ac comes only
from (143).

Note that Ac accounts here not only for the fraction of
cloudy ‘pixels’ in the zenith-radiance time series but also
for the horizontal photon transport [259, for instance] that
is ignored by 1D RT. Therefore, Ac is not the real cloud
fraction but rather a ‘radiatively effective’ one that forces 1D

Figure 32. Illustration of the {Ac, τ } retrieval algorithm based on
(144) with real measurements. DISORT-calculated values of
INIR + IRED and INIR − IRED are plotted for a wide range of τ and Ac

for SZA = 62◦ and surface albedos αRED = 0.092 and αNIR = 0.289.
When Ac is constant and τ varies, the set of calculated values define
the cloud-fraction isolines. When τ is constant and cloud fraction
varies, the set of values define the τ -isolines. Values INIR + IRED and
INIR − IRED (30 dots, with 10 for each cluster) are from the Cimel
measurements at the ARM site in Oklahoma on 28 July 2002.
Measurements were taken around 13 : 45Z, 13 : 58Z and 14 : 11Z
respectively, corresponding to decreasing abscissa NIR + RED. The
straight line through (0,0) corresponds to NDCI ≈0.08, hence
τ ≈ 80 along the Ac = 1 line.

RT calculations to give the same values of INIR and IRED as
the measured (3D) ones. In this case, one may allow Ac to
be negative! Then it immediately follows from (143) that T0

can exceed 1 and will thus be able to mimic reflectance off
cloud edges that reaches the surface. This commonly observed
phenomenon [134, 260, for typical examples] often leads to
surface fluxes in excess of the values predicted by 1D RT.
Detailed explanations, examples and discussions can be found
in Marshak et al ’s 2004 paper [90].

As an example of retrievals, figure 32 shows a NIR-
RED versus NIR + RED plane with Cimel measurements at
the DOE Atmospheric Radiation Measurement (ARM) site in
Oklahoma (97.48◦W, 36.61◦N) on 28 July 2002. The plot
illustrates INIR and IRED as functions of τ and Ac calculated
by using the DISORT 1D RT model to compute the various
quantities in (144) for SZA = 62◦ and surface albedoes αRED =
0.092 and αNIR = 0.289. Three groups of data points (10
points per group) measured by the ARM Cimel are also plotted.
The data points, while having different values of INIR and IRED

thus being located at different positions on the plane, have
almost the same NDCI—a straight line through the (0,0) point.
Therefore, if retrieved from it, the same optical depth would
have arisen (τ ≈ 80 for Ac = 1). However, as follows from the
plot, these groups correspond to three different {Ac, τ } pairs of
cloud properties: {0.9, 28}, {0.8, 22} and {0.4, 12} with clearly
different values of τ .
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8.1.2. Spatial signatures. Stratiform clouds (St and Sc)
may have cloud-top and cloud-base altitudes that are relatively
well-defined, at least over horizontal scales up to a few times
their thickness H . A plane-parallel slab assumption may
therefore be reasonable for their outer geometry. However,
these clouds are generally quite turbulent environments; so
their inner structure is highly variable. Microphysical probes
on aircraft have sampled the spatial variability of LWC, and
its wavenumber spectrum indeed follows the ubiquitous k−5/3

law [105, 261, among others], even though the turbulence
is far from Kologorov’s [262] statistically isotropic and
homogeneous model and condensed water is far from being
a passive scalar. LWP, vertically integrated LWC, can be
measured from ground-based microwave radiometers (MWRs)
[151, among others]. Time-series of LWP, viewed as frozen
turbulence advected past the instrument (much like in wind-
tunnel experiments), leads to the same conclusion. In
contrast, solar radiation observed from space or ground follows
the turbulence-driven k−5/3 law too, but only down to a
characteristic wavenumber k�. At smaller scales (larger k),
the spectrum dips to lower levels of variability. In section 6.3,
we have shown observations and 3D RT simulations of this
scale break. We were able to explain the scale break by
introducing the inherently 3D RT phenomenon of ‘radiative
smoothing’ [196], in essence, an observable manifestation of
the spatial Green function for multiple scattering [178].

So we have, on the one hand, at least an indirect
observation of the Green function and, on the other hand, a
reasonable diffusion-based theory of RT Green functions, at
least for optically thick clouds. We used this conjunction in the
NIPA (section 7.2.1) to mitigate the 3D RT effect of radiative
smoothing for the purposes of cloud remote sensing in the
conventional sense where an operational 1D RT model is used
as a predictor for cloud radiances. However, there is also here
a clear opportunity for a remote sensing retrieval of H using
simple passive instrumentation.

Indeed, suppose we have a ground-based NFOV
radiometer recording zenith radiance, as did Savigny et al
[200]. Then either Fourier or structure-function analysis of
the time series yields an empirically determined characteristic
scale r�(=1/k�) where the break occurs in the scaling. This
determination does not call for any radiometric calibration,
only a reliably constant gain factor that converts the incoming
radiance into photo-electrons or current. We know from the
detailed 3D RT computations shown in section 6.3.2 that

r� ∼ 〈ρ2〉1/2
T , (145)

where sub-index T stands for transmitted light. Finally, we
know from diffusion theory (section 4.1) that

〈ρ2〉1/2
T ≈

√
2/3 H,

if necessary with small correction terms dependent on cloud
optical thickness τ and asymmetry factor g (cf section 4.1), and
possibly also the cosine of the SZA µ0. Now, µ0 is known,
g ≈ 0.85 for low-level liquid water clouds, and τ can be
inferred independently from passive but calibrated radiometry
(as described, e.g. in section 3.2). The latter determination
is, in essence, based on the inversion for τ of transmitted flux

µ0F0 × T (τ, g; µ0), or of zenith radiance (with the added but
tractable issue of ambiguity). The only remaining question is
therefore about the precise relation to use in (145). Is a simple
proportionality enough and, if so, does the constant depend on
anything we should know about? Computational 3D RT can
answer this question using realistic cloud models.

One might start worrying about a fundamental inconsis-
tency that is building up here. We detect and quantify a scale
break, which presumes turbulent cloud structure ... and we
then invoke results from analytic diffusion theory that are
based on a uniform cloud assumption. What that means of
course is that the retrieved H and τ are ‘effective’ cloud prop-
erties: those of the uniform slab that give the observed values
of T (τ, g; µ0) and 〈ρ2〉T (H, τ, g; µ0). Is that good enough?
That question will depend on the application, but we can be
sure that in some cases the biased answers are not accept-
able. That is why we now have refined theory for RT Green
function observations, even with the framework of diffusion.
We have models for estimating the impact of unresolved small-
scale variability that the measurements have basically averaged
over. In fact three different types of model were discussed in
section 5.1. Although they were generally designed with the
radiation budget of ∼100 km GCM grid-cells in mind, there
is no fundamental reason why they cannot be applied, with
proper thought, to unresolved spatial variability in remote sens-
ing observations. Again, particularly attractive here are ho-
mogenization techniques such as Cairns’ renormalization (cf
section 5.1.1).

So, looking up from the ground at stratiform clouds,
we can tell their thickness using 3D RT phenomenology and
relatively simple instrumentation. What about looking down
from aircraft or space? The opportunity for remote passive
determination of H remains just as good, with one caveat.
Since we have

〈ρ2〉1/2
R ∝ H/

√
(1 − g)τ , (146)

from section 4.1, where sub-index R stands for transmitted
light, we will definitely need to know τ—and not just for
correction terms. So we will have to use an instrument with
absolute radiometric calibration (or a collocated one, possibly
with coarser resolution). Moreover, the prefactor in (146) will
likely depend on µ0, as is the case for temporal Green function
moments [108], and there will be a notable (x, y) anisotropy
if µ0 is significantly < 1. The role for computational 3D
RT is still there to refine the connection between r� and some
combination of 〈x2〉R and 〈y2〉R .

Another fundamental concern arises at this point. Solar
1D RT in clouds is not sensitive to vertical variations in
extinction σ(z) as long as other optical properties are not
dependent on altitude. Indeed, the natural independent variable
in the 1D RTE is τ(z) = ∫ z

0 σ(z′) dz′. So, beyond the key
position of the source, R and T (spatially integrated Green
functions) do not depend on what side is up or down if �0

and g are constant. This cannot be true of 〈ρ2〉R , a measure of
horizontal transport from the source position to the observation
point, if the cloud is actually denser at its top than at its
base. And that is indeed what we learn from elementary
cloud physics, a.k.a. ‘parcel theory’ [263]: moist air and CCN,
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rising in an adiabatic environment. For the natural assumption
of a fixed number of CCN, hence cloud droplets, adiabatic
growth predicts a linear trend in LWC(z) where it is 0 at
zbase and maximal at ztop. This leads to a power law for
σ(z) in |z − zbase|2/3.

Diffusion theory, based on (29), for a (pulsed) point-wise
boundary source remains tractable for D(z) = 1/(1 − g)σ (z)

with a power-law trend D(z) ∝ |z − zbase|−ζ , with 0 � ζ � 1.
However, the solution has already sufficiently complicated
expressions for a constant-gradient model

σ(z) = σ ×
[

1 +
�

H

(
z − zbase + ztop

2

)]
, (147)

with 0 � |�| � 2. The case of � < 0 corresponds to
observation and source points above the cloud, which applies
to passive solar measurements, while the � > 0 scenario
corresponds to observation and source below (cf section 8.3.3
for an application). Moreover, a straightforward least-squares
minimization [108] maps ζ to

�(ζ) = ±6 ×
[

2

(
ζ + 1

ζ + 2

)
− 1

]
, (148)

hence ζ = 2/3 to �(2/3) = −3/2 in the solar case. MC
simulations by Davis et al [108] show that, for all Green
function moments of interest here, the difference between
using the power-law model or the linear model using �(ζ)

is negligible.
The two panels in figure 33 show three key Green function

moments (two in time, one in space), all normalized to H , as
functions of � for reflected and transmitted light; (1−g)τ is set
at 8.1. Continuously varying diffusion-theoretical predictions
are compared with sparse but representative MC validation
data. Focusing on the spatial statistic (RMS ρ) in transmission
geometry (bottom panel), the diffusion model has singular
behavior when |�| → 2− (σ vanishes at cloud base). Maybe
worse is that the correction for stratification has the wrong
sign for this particular value of τ ; this is not the case at larger τ

and a parametrization based on that regime can be used [108].
The effect is 2nd-order in |�| anyway. In reflection (top
panel), the effect of � is 1st-order and there is no singularity
in this observation geometry (� < 0) applicable to both
solar and laser sources. Here again, Davis et al propose
in [108] an accurate parametrization (based on logarithmic
derivatives in � at � = 0), at least for the RMS ρ and mean
ct (used further on).

We have now taken care of all the most important structural
and optical properties of a Sc cloud in the forward diffusion-
based RT model for RMS ρ, hence the direct observable r�.
Yet there remains one main obstacle for implementation of
the above algorithm for a passive determination of H from
above, given τ . It is the need for Landsat- or ASTER-like pixel
sizes in the tens of meters since radiatively smoothed scales
need to be resolved. Earth observation satellites that target
global coverage do not have this level of spatial resolution
since they require wider swaths. Nonetheless, there may some
day be high-altitude unmanned airborne vehicles (UAVs), or
even stratospheric balloons [264], that will deliver the required
resolution.

Figure 33. Effects of cloud stratification on moments of Green
functions. Top: reflected light, in semi-log axes, where diffusion
predictions for the prescribed cloud (τt = 8.1) are in solid lines
while the MC validation data are plotted with bold symbols; we note
the presence of a logarithmic singularity in 〈ρ2〉R at � = +2.
Bottom: same as above but for transmitted light for the same clouds;
we note the nearly flat behavior of 〈ρ2〉T away from |�| = 0 and up
to the onset of the logarithmic singularity at |�| = 2. Reproduced
from [108].

In the meantime, it is important to promote multi-pixel
approaches, like the above procedure, in the physics-based
remote sensing community at large (beyond just clouds). The
industry has indeed been dominated since its inception by
single-pixel methods predicated on the assumptions that (1) all
the desirable information is somehow encoded in the multi-
or hyperspectral dimension of the data and (2) that there are
too many pixels coming down the pipeline to start processing
more than one at a time. The previous subsection is one more
proof that there are indeed vast amounts of cloud, aerosol and
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Figure 34. Remote observation geometry for a finite isolated
spheroidal cloud.

surface information still to mine for in spectral data. However,
it is time to challenge that preconception, just because it limits
our horizon unnecessarily.

We return to the determination of the important properties
of dense stratiform clouds {τ, H } using passive observations
in section 8.3.2; we will be taking, curiously, a time-
domain Green function perspective. The same endeavor, but
with active remote sensing technology, will be pursued in
section 8.3.3.

8.2. Cloud-sensing sideways

8.2.1. Horizontally finite clouds, in isolation. In section 3.3,
we provided a closed-form expression for the total reflectivity
R and transmittivity T of a homogeneous non-absorbing
spherical cloud defined, respectively, as the boundary fluxes
through the illuminated and shaded hemispheres, normalized
to the incoming solar flux. In that case, R + T = 1, by
conservation, and the non-trivial result obtained from diffusion
theory by Davis [98] is that R/T is given by (1 − g)τ/2χ ,
where τt = (1 − g)τ = (1 − g)2σrc is the diameter of the
sphere in scaled optical units, i.e. in transport MFPs. In fact,
noting that the same can be said of the all too familiar plane-
parallel slab clouds if one takes τ = σH , it is speculated that
the result is true for any oblate spheroidal cloud illuminated
along its shortest axis. From there, it is probable that many
other shapes of uniform diffusive clouds have the same optical
property,

R/T ∝ (1 − g)τ, (149)

if we continue (i) to partition R and T according to illumination
and (ii) to define τ based on a linear measure of the outer size
of the cloud.

This opens an opportunity for truly 3D cloud remote
sensing with, to boot, no need for absolute radiometric
calibration. Indeed, it is topologically impossible to have in the
same image both reflected and transmitted light if the cloud is a
horizontally infinite plane-parallel slab. In sharp contrast, most
vantage points give a view of both the illuminated and shaded
sides of an arbitrary ellipsoid illuminated along its shortest
axis, as illustrated in the schematic in figure 34. This does
not give us R/T as defined above in terms of boundary fluxes,
but we can get an estimate based on radiances measured at
some stand-off distance. As previously mentioned, to go from

Figure 35. ‘True-color’ channel combination of an MTI scene of
Los Alamos (NM) in the presence of broken clouds. This is a look
from 57.4◦degree off-nadir in the aft direction, i.e. from a position to
the north of the target. Local SZA was 54◦ and ≈175◦ away from
the viewing direction in azimuth. The positions of three pairs of
cloudy regions that were used to compile radiance statistics are
highlighted. Cloud-to-cloud and cloud-to-ground radiative
interactions are neglected in the retrievals.

a radiance I to a flux F , we need an angular model. Opaque,
highly reflective clouds are not far from being Lambertian
(isotropic) reflectors, so we can surmise that F = πI . As
for the unit sphere that defines direction space, the physical
space that defines the spherical cloud’s boundary can only be
sampled sparsely.

Hence we need to estimate spatial integrals over entire
hemispheres of hemispherical boundary fluxes, but we can only
measure remotely a few radiances. Clearly, the more directions
the better, but spatial (as well as angular/Lambertian)
uniformity assumptions are still in order. It is relatively easy to
find (by hand) distinct pixels that are representative of R and
T , and preferably many of each, if there is sufficient spatial
resolution. Assume now that these pixels have radiances
IR = I (xR,Ωobs) and IT = I (xT ,Ωobs), respectively, and
that the response of the imaging detector is flat across the whole
field of pixels—a statement about relative calibration. Then
we have built a case for using IR/IT to estimate R/T that in
turn can be used to estimate τ based on (i) our confidence
in g’s quasi-invariance in warm clouds and (ii) knowledge of
the proportionality factor in (149). The said proportionality
constant, and possibly higher-order correction terms, can be
derived from theory or computation. Note that we do not need
to target the outer cloud size, diameter 2rc, because here, unlike
H for slab clouds, it is obtainable by direct mensuration of the
image. Knowing the geometrical diameter 2rc and effective
optical diameter τ , we can estimate the volume-averaged cloud
extinction with σ = τ/2rc.

Figure 35 shows how the above algorithm was applied
to hand-picked clouds in a very broken Cu cloud field above
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Los Alamos, NM, USA (35.875◦N, 106.3245◦W), collected
on 22 September 2000, at 19:05 UTC. The data were captured
by the Multispectral Thermal Imager (MTI) satellite [265]
from a viewing direction of ≈60◦ off-nadir. MTI was a
satellite mission funded by the US Department of Energy
(DOE) as a technology demonstration in dual-purpose Earth
observation, partly for nuclear proliferation detection, partly
for environmental science. The only important facts about
MTI that need to be known here are (i) that its 14 spectral
channels included VNIR wavelengths where there is virtually
no absorption by droplets or tropospheric gases and (ii) that its
spatial resolution was 5 m at VIS and one NIR wavelengths,
otherwise 20 m.

Three clouds were picked to cover the range of outer sizes,
then small patches of pixels in the easily identified sunny and
shady portions of each cloud were hand-selected and the mean
radiances, as well as their standard deviations, were computed
and used as the inputs IR and IT . The proportionality constant
for the sphere, 1/2χ ≈ 3/4, was used for simplicity in (149)
to derive estimates of τ , assuming of course g = 0.85. The
‘big,’ ‘medium’ and ‘small’ clouds yielded effective τ -values
of 45 ± 11, 43 ± 10 and 26 ± 7, respectively. These numbers
are realistic for such clouds.

As in the prototype algorithm presented in section 8.1.2
to obtain H for stratiform clouds, the above algorithm to
obtain τ for cumuliform clouds is mono-spectral but multi-
pixel. So it serves as a second counterpoint to the mono-
pixel but multi-spectral theme used in mainstream remote
sensing of clouds, aerosols, surfaces, etc. As it stands, it has
the same obstacle for implementation: the need for unusually
high-resolution imaging that is generally precluded by the
need for global coverage. Again, there may be some day a
constellation of suborbital platforms with inexpensive non-
calibrated sensors that can nonetheless be used to support
physics-based remote sensing of the environment using
the kind of technique presented here. Alternatively, the
lower spatial resolution readily available from space assets
(approximately few hundreds of meters) can be used if one
can unravel mixtures of R, T , and clear sky. This should be
possible given enough multi-angle data, such as provided by
MISR (275 m pixels).

8.2.2. Horizontally finite clouds, with microphysical
stratification. What if one could measure the vertical profiles
of the cloud microphysical properties by retrieving them from
the solar radiation reflected directly off cloud sides? As we
mentioned earlier, all existing operational retrieval algorithms
are based on the plane-parallel approximation that does not take
into account the cloud horizontal’s structure. In terms of cloud
aspect ratio, γ = L/H , where L and H are horizontal and
vertical dimensions of the clouds, respectively, the main plane-
parallel assumption used for any remote sensing retrieval is that
γ is very large (cf figure 29). In that case, the satellite always
sees either the cloud top or the clear sky. From there, in the
case of cloud, using the 1D Nakajima–King algorithm [206],
a pair of reflectances at non-absorbing and droplet-absorbing
bands indicates both how optically thick the clouds are (by

Figure 36. Reflectance from a single cuboidal cloud with a
variable droplet effective radius. Cloud height H = 4 km, cloud
width L = 6.5 km (aspect ratio γ = 1.6), flat cloud top, τ = 80,
SZA = 60◦, VZA = 45◦ with the Sun in the back of the sensor.
Droplet effective radius re increases linearly with height from 5 to
25 µm. Reflectance from cloud top is at the right side of the cloud
edge while reflectance from cloud side is at the left. Dots indicate
‘measurements’ sampled at δx = 0.25 km resolution. Horizontal
axis starts at x = 0, which is 3.5 km away from the first cloud-side
measurement. Altogether, there are H × tan(VZA)/δx = 16
cloud-side measurements that go from x = 3.5 km to x = 7.5 km on
horizontal axis. Cloud top starts at x = 7.5 km and ends at
x = 14 km. Top: λ = 0.67 µm. Bottom: λ = 2.1 µm.

estimating τ ) and how much condensed water they contain
from (68): CWP ≈ (2/3)ρwreτ (by estimating re).

For cloud-side remote sensing in the solar spectrum,
Marshak et al [266] and Martins et al [267] suggested using
the same two wavelengths: one non-absorbing (0.67 µm) and
one with strong absorption by liquid water (2.1 µm). In
contrast to the 1D plane-parallel approximation, 3D RT is
used for interpreting the observed reflectances. As a proof-
of-concept that the signature of the ‘true’ effective particle
size is detectable in the observable reflectances at λ = 0.67
and 2.1 µm in a statistical sense, these authors experimented
on a few examples of simulated radiance fields reflected from
cloud fields generated by a simple stochastic cloud model with
prescribed vertically variable microphysics.

Figure 36 shows an example of reflectances from cloud
side and cloud top for two wavelengths: 0.67 and 2.1 µm
calculated with SHDOM [170]. The droplet effective radius
re increases linearly with height from 5 µm (at the cloud base)
to 25 µm (at the cloud top). Cloud geometrical thickness
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Figure 37. Feasibility of remote determination of effective droplet radius along the sides of convective clouds. (a) True (i.e. prescribed)
effective radius for droplets (blue) and ice particles (red). Smallest droplet radii are at the bottom of the cloud cells, largest droplets around
15 µm are at the top of the liquid water volume just below the largest ice effective radius values (re = 60 µm). The color-scale for re is
‘painted’ onto a 3D isosurface of constant CWC that defines cloud boundaries. (b) Observed reflectance values for λ = 0.87 and 2.1 µm for
certain true re ranges (droplets only). SZA = 45◦, VZA = 60◦ with the Sun in the back of the sensor. The inserted histogram illustrates the
underlying true re distribution.

H = 4 km and cloud optical thickness is τ = 80 (thus
extinction coefficient is 20 km−1). With horizontal resolution
δx = 0.25 km and viewing zenith angle (VZA) θ = 45◦,
there are H × tan θ/δx = 16 cloud-side ‘measurements.’ We
see that, under relatively low solar illumination (60◦ SZA),
I0.67 reaches its maximum near the cloud top (which is at
x = 7.5 km) where most of the photons are already reflected
back from the cloud side without either transmission through
the cloud and escape from cloud base, nor reflection from the
cloud top. The horizontal size L of this cloud is only 6.5 km
and, with the extinction coefficient 20 km−1, γ ≈ 1.6 is not
sufficiently large to reach a stable 1D plane-parallel regime
at cloud top. As a result, I0.67 decreases steadily from the
illuminated cloud edge to the shadowed one. In contrast,
I2.10 has a flat plateau, 5 km across, where the 3D reflectance
perfectly matches the 1D one. Because droplet size increases
with height, the maximum is reached much lower than in the
case of conservative scattering. It is around 1 km from cloud
base where re = 9–11 µm. With a further increase in re,
reflectance I2.10 drops fast and reaches a flat 1D level on the
cloud top (re = 25 µm) at only ≈1 km from the edge.

To account for the complex 3D nature of cloud geometry
and ensuing RT, Zinner et al [268] recently tested the approach
in realistic cloud-observing situations. They used a CRM [269]
to provide complex 3D structures of ice, water and mixed-
phase clouds, from the early stage of convective development
to mature deep convection. A 3D MC-based RT model [209]
was used to simulate realistically the proposed observations. A
large number of cloud data sets and corresponding simulated
observations provided a large database for an experimental
Bayesian retrieval.

As an example, figure 37 shows a simulated cloud field
and calculated reflectances. Left panel shows the ‘truth,’
i.e. the value of re that is visible for the given observational
perspective into the cloud structure. Due to the complexity

of 3D cloud structure and 3D RT a wide range of possible
reflectance values at 0.87 and 2.1 µm occurs for each value of
re (right panel, with droplets only). This differs clearly from
the classical picture of 1D RT through plane-parallel clouds
where a clear deterministic one-to-one map exists between a
pair of reflectances {I0.87, I2.10} and one pair of cloud optical
thickness and droplet effective radius values {τ, re}, for given
surface, viewing and illumination conditions [206, 212]. In
spite of blurring the separation by re, the core information
of droplet size is still visible in the reflectance picture. For
example, there is clear evidence that smaller 2.1 µm reflectance
is related to larger cloud particle size. To demonstrate the
performance of the experimental Bayesian retrievals, Zinner
et al used an independent simulation of an additional cloud
field as a synthetic testbed; see [268] for full details.

8.3. Direct observation of Green functions in time and/or
space

The spatial Green function of clouds for multiple scattering,
generally without droplet absorption, has already been used
extensively. It was used to assess 3D RT effects (e.g.
in the Landsat scale break), to mitigate them (e.g. using
NIPA) and was even exploited, albeit indirectly, to estimate
cloud thickness from passive solar observations using 3D
RT phenomenology (see section 8.1.2). This is quite
remarkable for a purely mathematical construct based in
fact on linear transport in a uniform plane-parallel medium,
or its approximation by the diffusion limit. The 3D RT
information content of the Green function comes entirely from
the concentration of the source to a single point in space.

We now ask what if we could observe the cloud’s Green
function directly? Moreover, we broaden our scope from
the steady-state problem and the spatial Green function to its
temporal and space–time counterparts.

56



Rep. Prog. Phys. 73 (2010) 026801 A B Davis and A Marshak

8.3.1. Pathlength statistics 1, space-based wide-FOV/multiple-
scattering lidar. We start with purely temporal Green func-
tions excited by a uniformly distributed pulse of light. We
would gladly observe this Green function using time-sampled
radiometry, if such a physical source exists. Approximations
do. Imagine a normally diverging laser pulse (say, 1.2 mrad)
impinging on a cloud from a transmitter at a very large stand-
off distance. Also imagine that the receiever FOV is somewhat
larger, as for standard ground-based lidar systems, but maybe
more (say, 3.5 mrad). That was precisely one of the possi-
ble configurations used by the first lidar system launched into
low-Earth orbit (LEO), and returned, in the cargo-bay of Space
Shuttle Discovery. The STS-64 mission thus carried the Lidar-
In-space Technology Experiment (LITE) to ≈260 km altitude
on 9–20 September 1994 [270]. More precisely, that wider
FOV was used on the nighttime side (no solar background
noise) of orbit #135, which overflew an extensive marine Sc
deck off the coast of Southern California. The transmitter
produced 0.5 J pulses at 532 nm (using a frequency-doubled
Nd : YAC solid-state laser) with a 10 Hz rep-rate, and the re-
ceiver had a 1-m diameter telescope. It was a rather hefty
instrument, but it was the first to go to space and operate ac-
cording to specs.

The diameter of LITE’s laser beam was ≈0.3 km at
cloud top, and the footprint for its FOV ≈0.9 km. So
the detected light could have been transported horizontally
anywhere between 0 and 1.2 km (from one side of the laser
beam to the opposite side of the FOV); within its FOV, it
collected all the available light transported less than 0.6 km.
The targeted marine boundary-layer clouds have H in the
range 0.2–0.5 km. Optical depth τ is in the range 4–40,
hence 0.6 � (1 − g)τ � 6 (typically with a skewed, log-
normal-type distribution). Also, it tends to correlate loosely
with H , specifically, H ∼ τ 2/3 [271]. Using typical values,
H = 0.3 km, τ = 13, (94) then gives the RMS spread of the
spatial Green function as ≈0.3 km, and this number is expected
to go up or down only by a factor of 3±1/6 (0.8–1.2) on average.
So we can confidently say that LITE has captured most of the
multiply scattered laser light coming its way.

Among the ≈2000 pulses returned from this 13 min
segment, four were particularly interesting because they were
in close proximity and not saturated at their peak values.
They are shown in figure 38. The point at which the optical
‘echo’ appears to come below sea-level is indicated, and this
makes the pulse stretching by multiple scattering particularly
evident. From these signals the background (in this case, shot
and electronic) noise level can be determined visually and the
above-noise signal can be used to estimate temporal moments,
〈ct〉R and 〈(ct)2〉R . From there, one can use (95)–(96), but as
recently refined [107] for collimated beam effects, to infer both
H and τ . The outcome is τ ≈ 17 and H ≈ 0.28 km, which is
not unreasonable in view of the marine Sc climatology briefly
described above. An independent refinement for stratification
effects by Davis et al [272], possibly over-compensating, leads
to τ ≈ 11 and H ≈ 0.4 km, which is still well within the
climatology.

Other methods of analysis based on explicit expressions
for the time-domain signal concur with these numbers [59], and

Figure 38. Four non-saturated LITE pulses returned from an
optically thick marine Sc deck. Time-dependent reflected radiance
R(t) is plotted in arbitrary (engineering) units as a function of
altitude of the apparent echo (upper axis) and path inside the cloud
(lower axis), respectively, the interpretations applicable to the
conventional single-backscattering model for the lidar signal and to
the new multiple-scattering model that is favored here.

could be used in the presence of saturated portions because the
range of time-bins used in the retrieval can be varied by the user.
To illustrate with a consistency check, we can use the effective
{H, τ } pair obtained for the uniform cloud assumption in (87).
Assuming χ = 2/3 for simplicity, this predicts the ct� to be
≈0.50 km. The observed value in figure 38 is ≈0.54 km, and
the 7% difference is well within experimental error.

8.3.2. Pathlength statistics 2, high-resolution O2 A-Band
spectroscopy. To study and exploit temporal statistics, one
does not need to obtain explicit time-domain data as long as
Laplace-domain data are available. In the case of multiple
scattering in the cloudy atmosphere, there happens to be an
emerging observational technology that gives us access to
Laplace-space data. It is high-resolution differential optical
absorption spectroscopy (DOAS) in the ‘A-band’ of oxygen at
759–771 nm, which was mentioned briefly in section 2.1. The
lower panel of figure 2 for O2 optical depth κν × H across a
typical low-level stratus cloud layer. For the instrumentalist’s
convenience, it sits roughly at the maximum of the solar
spectrum when expressed in photons s−1 m−2.

The important property of O2 used here is that, being a
dominant component of air, its density n is known everywhere
with high accuracy. We also know its optical absorption cross-
section ξa(ν) very well as a function of wavenumber ν, given
pressure and temperature (i.e. altitude). So, we know its
absorption coefficient κν = n × ξa(ν) as a function of ν,
and it varies over several orders of magnitude (cf figure 2).
Therefore, for a known path L and a known source of
broadband radiance I (0), we are able to predict directly
transmitted radiance from Beer’s law:

Iν(L) = I (0) exp(−κνL). (150)

This is the simple forward model for DOAS of a gas, O2 or
other, at least for high-enough resolution that we do not need
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to convolve the spectral variations with a ‘slit’ function. In
practice, that is never quite true. The point here is that we will
need this high-enough resolution to justify the use of Beer’s law
of exponential transmission as a reasonable approximation for
the RT-based signal model. In DOAS, we focus on the direct
transmittance factor Tdir(ν, L) = Iν(L)/I (0), where I (0)

can be determined empirically by seeking a wavelength with
negligible absorption, yet not too far from the absorption band
of immediate interest, to avoid questions about the spectral
invariance assumed for the scattering and reflection.

In operational DOAS, one does not know everything in
(150). Unforeseen spectral features can be used to detect
and identify unknown molecules in the path. Alternatively,
the strength of the spectral lines can be used to estimate the
density of a molecular species with a known cross-section.
In the present case of multiple-scattering in clouds, we know
everything about the molecules but not the path L(≡ct) per se,
because it is in fact a random variable. Consequently, if we
know G(ct, x,Ω), the temporal Green function for the uniform
boundary source of interest in solar radiation from (3 + 1)D
RT at the A-band wavelength but only for scattering/reflection
processes, then the forward model in (150) becomes

Iν(x,Ω) =
∫ ∞

0
G(ct, x,Ω)e−κνct dct, (151)

which is sometimes called the ‘equivalence’ theorem
[273, 274]. Note that, apart from again forgetting the slit-

function convolution, we have not yet decided what kinds of
spatial (x) and angular (Ω) integrations we will use, if any.
If we do not know the Green function, it is not too serious if
nature gives the left-hand side of (151) from measurements
and we are only interested in temporal moments, as defined
in (89)–(90). Indeed, we can recognize in the equivalence
theorem the temporal part of the Fourier–Laplace transform in
(81) but where κνc plays the role of s. This enables us to use the
recipe in (92) to obtain successive moments of t , hence of ct .

So we end up in this paradoxical situation where
two radically different kinds of instrument—one active and
monochromatic, and the other passive and hyperspectral (many
contiguous spectral bands)—can be brought to bear on studies
of path length. Each of these has a host of technological
idiosyncrasies, enough that each instrument class is owned
by a different community of observation experts. Yet they can
deliver the same primary products, namely, 〈(ct)q〉R (q = 1, 2
and possibly more). Having obtained from an O2 A-band
spectrum at least the first two moments of path length, we can
perform the same cloud property retrievals as demonstrated
above with LITE data. Thus, {H, τ } would be the final
(‘level 2’) product.

If, for any reason, we prefer not to estimate the moments
explicitly, we still have a compelling moment-based argument
that there is enough cloud information content in Iν(x,Ω) to
perform the same remote sensing task. One way to do that is
to fit the spectroscopic data, re-ordered by value of κνc, which
yields a monotonically decreasing function. The nonlinear
model could be one or another of the analytic expressions
for R̃(s) from sections 3–4 or from the literature since the
effects of oblique collimated illumination have recently been

incorporated [107]. The optimal choice of cloud parameters is
then found by fixing χ (or µ0) and g, and varying the pair in
{H, τ } to fit the data.

All of this is for reflected light of course, which means
that the A-band instrument must be above the clouds, either
on an aircraft or a satellite. There is a long and venerable
line of theoretical and observational studies, many done in
the former Soviet Union, on A-band spectroscopy from above
ground that, incidentally, has other applications than cloud
remote sensing. This literature is surveyed in great detail in a
recent review paper by Davis et al [108]. Spectrometers that
happen to cover the A-band or are custom-built for it have
thus been flown for a long time, both on aircraft and in space.
However, only now are we achieving the spectral resolving
power we need to fully benefit from this opportunity in cloud
remote sensing. In particular, we were looking forward to the
cloudy pixel data from the imaging A-band spectrometer on
the Orbiting Carbon Observatory (OCO) mission; figure 2 was
in fact computed at the exquisite spectral resolution OCO’s
instrument. Unfortunately, the launch vehicle failed ... but
we are looking forward to the replacement mission (not yet
appropriated by NASA at the time of writing).

It is interesting to note that OCO’s mission had nothing
to do with clouds and everything to do with mapping CO2

globally. The only programmatic reason OCO had an O2

A-band instrument was to deliver the CO2 column density
as a mixing ratio expressed in ppms, which is the way the
greenhouse gas (GHG) monitoring community likes to see
it (as opposed to g m−2). This is a recurring scenario in
instrument and algorithm development, particularly for space,
at the cutting-edge of remote sensing science: we start by
using something that exists for some other reason, because a
new concept will take a long time to prevail all the way to
funding decisions and implementation.

At least two academic institutions have invested time and
effort to deploy high-resolution O2 A-band spectrometers at
ground-based stations in recent years. This of course forces us
to work with the light transmitted by clouds. Interestingly, both
the University of Heidelberg (K Pfeilstiker, PI) [275–277] and
the State University of New York at Albany (Q Min, PI) [278–
281] teams have focused their A-band research on assessing
the spatial complexity of clouds rather than the remote sensing
tasks described above. This is a good thing because we recall
from section 4 that the 2nd-order temporal moment of the
transmitted Green function, 〈(ct)2〉T , adds nothing new to
the information conveyed by the 1st-order moment, 〈ct〉T ,
their ratio being essentially constant across variations of τ ;
see (99)–(100) and figure 10. These teams both started with
studies of 〈ct〉T and moved on to 〈(ct)2〉T with upgraded
resolving power. Overall, the better the spectral resolution
and, just as importantly, the out-of-band rejection of the slit
function, the more pieces of path length information that can
be inferred [278].

For their basic O2 A-band DOAS data analysis, both the
Heidelberg and the SUNY-Albany groups used a compromise
between the two approaches sketched above. They used a
nonlinear fit in Laplace/κν-space. Specifically, they used the
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Laplace transform of the gamma distribution in (110), but for
random variable ct instead of τ , i.e.

P̃ (s/c) = 1(
1 + 〈ct〉T s/c

a

)a , (152)

where s/c is identified with κν . This is like its Fourier-space
use in the NIPA (section 7.2.1), but with the two first moments
of path ct rather than horizontal transport ρ. In this case, the
parameters to determine numerically by fit are 〈ct〉T and a,
where the latter value immediately yields the interesting ratio
υ = 〈(ct)2〉T /〈ct〉2

T through a = (υ2 − 1)−1.
To the above two teams at universities, we add a National

Oceanic and Atmospheric Administration (NOAA) team that
made a successful foray into this research area. Interestingly,
Portmann et al [282] used the weaker O2 B-band (∼687 nm)
and relatively low-resolution, but good enough to extract
the mean path length. Also, their focus was primarily on
completely overcast skies and they therefore reached very good
agreement between their observed values of τ and 〈ct〉T with
straightforward 1D RT predictions.

Because
√

〈(ct)2〉T ∝ 〈ct〉T ∝ (1 − g)τ × H , there
are more unknowns (τ, H ) than independent observations by
ground-based A-band instruments in cloud remote sensing
role, even when limited to single/unbroken layers. They
must therefore be used in synergy with one or more ancillary
cloud-probing sensors, e.g. the new exploitation of the solar
background in MPLs to determine τ from Izen (as explained
in section 3.2). Another instrument pairing could include
the simple NFOV radiometers that can be used to derive τ

if calibrated, and H if not. The latter scenario uses (98),
as explained in section 8.1.2. Moreover, the raw data may
even be sampled from the A-band instrument at the non-
absorbing wavelengths, otherwise used only to normalize the
radiances within the absorption band. At any rate, given
H (e.g. from a NFOV) or τ (e.g. from an MPL’s solar
background), A-band will give the other cloud parameter
through the observed value of 〈ct〉T and the prediction for it
in (99), or a refinement that accounts for oblique collimated
illumination and/or stratification.

With access to 〈ct〉T and 〈(ct)2〉T , the Heidelberg and
SUNY-Albany groups noticed that the empirical relationship
between 〈ct〉T and τ undergoes a qualitative change when the
cloudy skies go from a single unbroken layer to a complex
scene with multiple and/or broken layers. For a given τ

(obtained by some other means), 〈ct〉T is radically reduced by
3D RT effects for given H . This is as predicted in sections 5.1.2
and 5.1.3 and other theoretical studies, most notably by
Stephens et al [283, and references therein]; these last authors
made extensive use of time-dependent MC methods applied to
specific realizations of fractal or data-driven stochastic cloud-
field models.

The Heidelberg group adopted the anomalous diffusion
(mean-field 3D RT) model from section 5.1.3. They find
that the vast majority of cloudy skies had effective Lévy
indices α between 1 and 2 [276, 277], where the upper bound
corresponds to the standard 1+1D RT model. They also found
that the ratio

√
〈(ct)2〉T /〈ct〉T was essentially independent of

both τ (as predicted for uniform slab clouds using PDEs) and
α (the more-or-less chaotic cloudiness). Figure 39 illustrates
this interesting finding by Scholl et al [277] that challenges
current models. Davis’ [63] recent mean-field model based
on anomalous transport generalizes the anomalous diffusion
theory and explains the constant ratio. However, it is really
just a MC-based computational technique that uses an ad hoc
substitution of exponentially distributed steps with a tunable
power-law. Analytical solutions leading to predictions for
prefactors and pre-asymptotic corrections, as were obtained
for the normal diffusion model, are of course desirable; they
may be obtainable following the formalism of Buldyrev et al
[284] based on pseudo-differential operators (i.e. fractional
derivatives).

In summary, there are basically two cloud-probing
functions for hi-res O2 A-band spectroscopy depending on sky
conditions. If the cloud structure is simple, a single near plane-
parallel layer, then A-band spectrometry is a cloud remote
sensing technique bringing more or less information to the table
depending on the vantage point: are we looking at reflected or
transmitted sunlight? If the cloud structure is complex, with
either multiple or broken layers, then (i) A-band responses can
detect it and (ii) A-band signals can help to assess—and maybe
parametrize—the 3D RT effects.

What good is the later functionality of O2 A-band DOAS?
We must recall that the most challenging case for radiation
budget estimation in a GCM grid-cell is for the shortwave
heating rates when the cloud structure is complex. A-band is
after all about how multiple scattering in and between clouds
affects the process of gaseous absorption, which is key to
climate when the gas is energetically relevant in the solar
spectrum (primarily, GHGs H2O and CO2). So it is clear that,
if there is a claim that a given GCM shortwave parametrization
for cloudy columns makes accurate broadband predictions
using all the important species, then it should be able to do
so for O2 since it is very well mixed.

Therefore, by slightly tweaking GCM shortwave
parametrizations to become A-band signal predictors (rather
than broadband integrators), the O2 A-band’s strong response
to 3D cloud structure can be exploited. By making it a sensitive
diagnostic of 3D RT effects, it can be used to evaluate the
performance of GCM shortwave parametrizations, for given
clouds. This activity would normally lead to improved solar
RT parametrizations, up to the point where the weakest link in
the GCM physics is somewhere else, probably in the forecast
of cloud amount and optical properties based on microphysics.
Even then, A-band may be able to help by providing a radiative
criterion for what is a good-enough representation of the
clouds from the important standpoint of shortwave gaseous
absorption.

8.3.3. Wide-FOV/multiple-scattering cloud lidar, at suborbital
ranges. Our last technical topic is a small conceptual
extension of cloud remote sensing with space-based/wide-
FOV lidar pioneered with LITE (cf section 8.3.1). If the stand-
off distance is not so great, surely there is a way of directly
recording the spatial part of the Green function excited by the
pulsed laser beam. We already know from section 4.2, that this
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Figure 39. Millimeter-Wave Cloud Radar (MMCR) transects and path length moments from O2 A-band for the cloudy sky over Cabauw,
NL, on 11 May 2003. The upper panel shows the structure of clouds according to the collocated MMCR as a function of time, roughly for
1 h. The scene is color-coded for three successive periods where the clouds go from two solid layers to a more and more broken structure.
The lower left-hand panel shows 〈ct〉T /H , H being the thickness of the whole cloud system (from the MMCR), and 〈ct〉T from the
2nd-generation University of Heidelberg O2 A-band spectrometer. This ratio is plotted as a function of scaled optical depth τt = (1 − g)τ
(obtained from other collocated instruments). Overlaid on the data is an ad hoc hybrid model that used the prefactor and pre-asymptotic
corrections in (95) but the scaling exponent for τt taken from section 5.1.3. The lower right-hand panel shows

√
〈(ct)2〉T /〈ct〉T as a function

of τt for the same observations. We note the essentially constant RMS/mean ratio. Reproduced from [277].

added information will help determine the cloud properties of
immediate interest {H, τ }.

As far as we know, two groups have worked on this task
assuming different stand-off distances. The NASA–GSFC
team (led by R F Cahalan) developed an airborne device that
operates from ∼10 km above cloud top; it was baptized as the
[cloud] THickness from Off-Beam Returns (THOR) system.
The Los Alamos National Laboratory team (led by a present
author, AD, and S P Love) developed a ground-based device
that operates from ∼1 km below cloud base; it was baptized as
the Wide-Angle Imaging Lidar (WAIL) system. Both projects
succeeded at the proof-of-concept level for nighttime operation
in the relevant environment [110, 111]. The receiever hardware
implementations were very different at the focal plane as well
as the fore-optics. In spite of the identical signal physics, the
adopted data analysis procedures were also very different in
philosophy and in execution.

THOR was designed to produce an azimuthally integrated
profile of the spatial part of the Green function; it is based on

eight different concentric bundles of fiber-optics that channel
the spatially partitioned light from the focal plane to as many
fast detectors (designed for otherwise standard lidar work).

WAIL went through two receivers, both being imagers.
The first was a special detector custom-built at Los Alamos
National Laboratory (LANL) for the Remote Ultra-Low Light
Imaging (RULLI) program [285]. It worked well for laboratory
mock-ups [286] and in the far field for real clouds [287].
However, it could not cope with the huge dynamic range
without a cumbersome system of density filters used in
the deployments. The second receiver was an off-the-shelf
gated/intensified CCD camera that has far more capability
than has been harnessed so far; of prime interest here is the
possibility of adaptive exposure times for different time gates,
given the hugely variable signal levels.

Both WAIL and THOR were fielded at a coordinated
validation campaign in March 2002, respectively , at and
above the previously mentioned DOE ARM program’s climate
monitoring facility in Oklahoma. An extended stratus layer
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Figure 40. Observed and predicted spatial Green function. The
color-coded data points are from LANL’s WAIL instrument,
collected on 25 March 2002, at the ARM Southern Great Plains site
under overcast skies. The three colors correspond to the three
background-suppression interference filters used to rebuild the
spatial Green function from three successive acquisitions; their
angular responses at the laser wavelength (532 nm) are displayed in
the inset on a log scale. Also plotted is a smoothed version of the
observations from a moving-mean filter (magenta curve), and the
signal prediction from the diffusion-based forward RT model (black
curve), as optimally fit to the data by varying {H, τ }. Only the θ(ρ)
region highlighted with the arrows was used to compute the fitting
cost-function, as it is where the diffusion model can be used with
some confidence. Reproduced from [111].

developed and was thus probed, from both sides, by wide-
FOV/multiple-scattering lidar systems. The objective was to
compare THOR and WAIL cloud property retrievals with those
obtained from operational ARM instruments. The outcome for
both systems and data analysis procedures compared well with
standard ARM products or a cloud-cover reanalysis based on
radiosonde profiles, and are thus deemed ‘validated.’

Figure 40 shows one example of how WAIL data were
processed. Since WAIL’s (and, for that matter, THOR’s) time-
domain signals are not fundamentally different from those of
LITE, we choose to display some spatial data. Every point
corresponds to the time-integrated signal at each pixel from
the gated/intensified CCD plotted as a function of its distance
to the pixel estimated to be where the laser beam hit the
cloud base. The three primary colors are for three separate
background-suppression filters used to reduce the (lunar) noise
level; see inset. Each of the 10 nm band-width interference
filters also had a characteristic angular response at the fixed
laser wavelength (532 nm) and the trio were necessary to
build up the full 53◦ FOV image—in fact ‘movie’ (before the
illustrated time-integration was performed).

One interesting aspect of the spatial signal displayed
in figure 40 is that it is severely truncated. For instance,
multiplication by ρ2 ×2πρ, which is preliminary to estimating

〈ρ2〉R , leads to an increasing curve that levels but does not
decay to zero. So moment estimation is useless. The cloud
was too low or the 53◦ FOV was too small. That is one of the
reasons why it proved important to obtain more approximate
but explicit expressions for the Green functions in space and
time [59, 103]. Their free cloud parameters can be fit to the
space–time data only where data are available and only where
the model is known to be valid. As previously mentioned,
the trick to obtain Fourier–Laplace invertible solutions is to
rewrite the BCs approximately as Dirichlet-type rather than
Robin-type. The resulting analytical prediction for R(ρ) is
shown in the figure, as fitted to the data (black curve).

8.3.4. Wide-FOV/multiple-scattering cloud lidar and O2

A-band: a general discussion. In view of the many
technological and logistical differences between the LANL
and GSFC systems and in the way their signals were analyzed,
we see their joint successes as an overarching validation of
the whole idea of using direct space–time Green function
observation to probe clouds and retrieve important cloud
properties. This successful innovation of lidar technology adds
tremendous capability to active cloud remote sensing. Indeed,
standard (on-beam/single-scattering) lidar cannot penetrate
clouds with τ � 3, even after corrections for multiple
forward scatterings that reduce the apparent extinction, and
that is precisely where these off-beam/multiple-scattering lidar
systems start performing.

The successful analysis of LITE cloud data surveyed in
section 8.3.1 reinforces to this validation statement and, at
the same time, defines LITE a forerunner of the emerging
concept we refer generically to as Multiple-Scattering
Cloud Lidar (MuSCL). Another novel active technique for
probing the bulk properties of clouds was mentioned in the
introductory section, in situ cloud lidar [21, 22], which was
developed at the University of Colorado and by Stratton
Park Engineering Company (SPEC), Inc. (Boulder, Co)
〈http://www.specinc.com/〉. Its signal physics are the same
as in THOR and WAIL (and, like LITE’s, purely temporal).
It should therefore be considered as part of the same class of
MuSCL techniques. Who cares if the source and sensor are
inside the cloud? It is still a remote detection of the presence
of cloud boundaries above and below the aircraft, hence its
estimate of H . The other cloud property it delivers is volume-
averaged extinction for the cloudy air all around the aircraft,
in other words, τ/H .

It is interesting to ask about the spatial resolution of Green
function observation techniques, both passive and active. It is
inherently adaptive. Imagine, for instance, a ground-based
MuSCL system such as WAIL. Basically, it is the width of the
spatial Green function, which itself depends on {H, τ }, because
the retrieval is in effect for volume-averaged cloud properties.
The volume is ∼ H ×〈ρ2〉F (H, τ), with F = R for WAIL and
F = T for ground-based A-band. In any application (such as
climate prediction) where solar RT matters, this is the optimal
resolution; the unresolved variability is then, by definition,
incorporated into the Green function measurement.

We cannot close this discussion without mentioning that
active Green function observation with wide-FOV/multiple-
scattering lidar has other applications than clouds in
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environmental science, and it has analogs in other branches
of science altogether. All that is required really is a highly
scattering optical medium, the instrumentation can be adapted
to a wide variety of scales and levels of access to the
medium, starting in the lab and ending (why not?) with
planetary missions. As an example, the THOR team has
proposed to use its technology to probe sea ice and snow
cover [288]. Applications to turbid coastal water also come
to mind.

Since the 1990s, the new medical imaging field of ‘diffuse
optical tomography’ [289] has gone from the concept to the
lab to clinical applications. It is predicated on the fact that soft
tissue is highly scattering in the NIR, but anomalies (small
tumors, aneurysms and so on) are either highly absorbing or
they behave like optical voids. With enough sampling of the
space–time Green functions from any number of source-and-
sensor positions, one can reconstruct the medium at a coarse
scale that may be sufficient for screening and diagnostics. This
novel and inherently non-invasive tomography was enabled
by progress in computational physics and numerical analysis:
there are now extremely fast solvers for the (3+1)D diffusion
equation in arbitrary outer and inner geometry. In this
context, WAIL and THOR are a poor-man’s version of optical
tomography suitable for clouds. Only one sample of the space–
time Green function allowed, but it can be assumed that the
only ‘anomaly’ to be located is the absorbing boundary of the
cloud opposite the illuminated one, hence H . Also, we wish
to estimate the volume-averaged scattering coefficient of the
cloudy medium, hence σ = τ/H , which is a known quantity in
the biomedical application. The strong response of O2 A-band
products (i.e. 〈(ct)q〉F for q = 1, 2, 3, . . .) to 3D complexity
in cloud structure is another manifestation of the crude but
valuable tomographic capability of radiative Green function
observation.

It is too early to know how the atmospheric science
community at large will assimilate and use this new kind
of information. What we do know, since section 4, is that
reflected A-band spectra will contain more cloud information
than their transmitted counterparts. Conceivably, one could
retrieve {H, τ, �, ε, · · ·} or {H, τ, α, · · ·}, referring to internal
structure parameters used in previous subsections. Moreover,
when we get such data from space, we will have global
coverage of the daytime hemisphere. And for the nighttime
side of the orbit, a co-manifested MuSCL system (with a FOV
similar to LITE’s) will hopefully be there to pick up the relay.

In view of the technicalities of Green function observation
and the ensuing physics-based data processing, it is very
likely that—as in the medical profession for tomography—
there will be a natural separation of labor into subject-matter
experts (remote sensing scientists) and end-users engaged in
Earth-science endeavors that are much bigger than the remote
sensing. Each type of individual will be easily identifiable
and each individual will have distinctive passions. These sub-
communities will have to understand intimately each other’s
needs and interests if Earth science is to benefit fully from the
new technology.

9. Summary and outlook

Driven by climate and remote sensing applications, we
reviewed the physics underlying the transport of solar (and
some laser) radiation through the Earth’s cloudy atmosphere.
We encountered along the way many challenging problems
stemming from (i) the spatial complexity of real clouds and
(ii) the physical complexity of multiple-scattering processes.
For each problem that presented itself, we discussed state-
of-the-art solutions, emphasizing those that bring physical
insights that can be used again and again. We discovered in
particular that Green functions play a key role in almost every
aspect of the phenomenology of 3D radiative transfer in and
between the clouds, the aerosols, the gases and the surface.
We also discovered that, even though the problem at hand
is steady-state, time-dependent radiation transport has proved
very helpful. After all, transport of radiant energy unfolds in
space, and time for that to happen is implicit.

One century ago, Peter Debye published a seminal paper
[3] on scattering of EM waves by spheres, one at a time, and
his paper appeared only a year after the better-known one by
Gustav Mie [2]. Radiative transfer in 1D in the presence of
multiple scattering is older, although maybe not by much, since
it can be traced back at least to Arthur Schuster’s 1905 paper [4]
on visibility through fog. At the time of writing, we cross
the significant milestone of a half-century of research in 3D
radiative transfer in spatially variable media such as clouds,
which started (as far as we know) with Giovanelli’s landmark
1959 paper [8] applying a perturbative diffusion theory of 3D
radiation transport to plane-parallel media with a regular sine-
wave structure.

Taking a historical perspective on this development, we
have identified three phases and the associated thrusts continue
to this day.

• First, there was a long period of damage assessment
since 1D radiative transfer had become the de facto
standard model in all the application areas, spanning
from solar heating rate estimation for the energy cycle in
climate models to the translation of pixel-scale reflected
or transmitted solar radiances into inherent optical or
microphysical cloud properties.

• Then came attempts to mitigate this damage since,
realistically, we expect that 1D radiative transfer is not
going away any time soon. At any rate, its status
will slowly evolve from being the point of reference,
simply because it is so popular, to being just one possible
approximation to 3D reality that happens to simplify
radically the computations. Enhancements of its range of
validity via 3D–1D bias mitigation will help in practical
situations.

• Finally, as our understanding of 3D radiative transfer
phenomena matures, we enter a new era where we embrace
the spatial complexity and find ways to exploit inherently
3D radiative transfer processes and thus re-invigorate the
science and technology of cloud remote sensing. We
have every reason to believe that both passive and active
modalities will emerge, and we can already detect a trend
toward techniques that avoid the costly and cumbersome
need for absolute radiometric calibration.
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At all three levels, the preliminary question about any specific
3D radiative transfer problem at hand is whether the spatial
variability is resolved or unresolved, given the scale of interest.
That scale can be either the computational grid constant
or the remote sensing pixel size. Approaches for treating
unresolved variability invariably have a stochastic flavor (and
often analytical methods work well), while those we apply to
cases of resolved variability are necessarily deterministic (and
typically lead to a computational scheme).

As part of a second generation of 3D radiative transfer
experts, following in the steps of pioneers, the present authors
are confident that the field has a bright future. There are
clear signs that the old paradigm grounded in stalwart 1D
radiative transfer is waning and that a new paradigm grounded
in theoretical, computational and observational 3D radiative
transfer is gaining considerable momentum.
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